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3

The history of Earth’s climate and carbon cycle is preserved in deep-sea4

foraminiferal carbon and oxygen isotope records. Here we show that the5

sub-Myr fluctuations in both records have exhibited negatively skewed non-6

Gaussian tails throughout much of the Cenozoic Era (66 Ma-present), suggest-7

ing an intrinsic asymmetry that favors “hyperthermal-like” extreme events8

of abrupt global warming and oxidation of organic carbon. We show that9

this asymmetry is quantitatively consistent with a general mechanism of self-10

amplification that can be modeled using stochastic multiplicative noise. A11

numerical climate-carbon cycle model in which the amplitude of random bio-12

geochemical fluctuations increases at higher temperatures reproduces the data13

well, and can further explain the apparent pacing of past extreme warming14

events by changes in orbital parameters. Our results also suggest that, as an-15

thropogenic warming continues, Earth’s climate may become more susceptible16

to extreme warming events on timescales of tens of thousands of years.17
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Introduction18

Paleoclimate proxy records reveal not only that Earth’s climate-carbon cycle system has19

changed substantially on timescales of many millions of years, but also that it has experienced20

large, temporary disruptions on timescales of tens of thousands of years. Notable examples21

from within the Cenozoic (66 Ma - present) include the “hyperthermal” warming events of the22

early Eocene (1–13). This record of past climate-carbon cycle disruptions provides an obser-23

vational window into the Earth system’s long-term response to anthropogenic forcing (14–16).24

However, important questions remain to be answered. To what extent does the record of past25

disruption reflect a proportionate response to external forcing, and to what extent does it re-26

flect intrinsic self-amplification within the climate-carbon cycle system itself (17–19)? Since27

large disruptions appear to have been more common in some time periods than others (e.g. the28

Eocene), what are the general properties of the climate-carbon cycle system that determine the29

nature and magnitude of extreme events? The risk that a strongly nonlinear long-term Earth-30

system response to anthropogenic forcing would pose for human civilization (20) adds urgency31

to these questions.32

Cenozoic climate-carbon cycle fluctuations can be studied using δ18O and δ13C records33

from deep-sea benthic foraminifera (Materials and Methods). Hyperthermal events are identi-34

fied by paired negative excursions in δ18O and δ13C, and have been interpreted as rapid global35

warming events caused by the release of isotopically depleted organic carbon into the sur-36

face environment. They further appear to have been paced by changes in the eccentricity of37

Earth’s orbit (4–11), although the precise mechanism is unclear. Proposed carbon sources for38

the largest hyperthermals include sedimentary methane hydrate (21,22) or permafrost (23) reser-39

voirs. However, many of the events likely reflect mechanisms of carbon release from relatively40

more accessible surficial reservoirs, such as dissolved organic carbon (24), that have persisted41
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throughout much of the Cenozoic (8, 9).42

The typical behavior of these hyperthermal disruptions is demonstrated in Figure 1, which43

shows time series of benthic foraminiferal δ18O and δ13C from the early Eocene. The data are44

obtained from the global astronomically tuned Cenozoic composite record of ref. (13). To iso-45

late the sub-Myr fluctuations, we have subtracted a 1-Myr running mean. Finally, the empirical46

probability distribution of the fluctuations is also shown. Here, the hyperthermals manifest as47

extreme events in a probability distribution with an asymmetric non-Gaussian tail. The asym-48

metry quantifies a tendency towards negative excursions rather than positive excursions, sug-49

gesting that the climate-carbon cycle system exhibits a fundamental tendency towards extreme50

events involving global warming and oxidation of organic carbon. In this study we quantify the51

evolution of this asymmetry throughout the Cenozoic, and provide theoretical and analytical52

frameworks to explain the observed behavior.53

Results54

Cenozoic δ18O and δ13C fluctuations55

Past studies of climate-carbon cycle disruptions have typically focused on individual, clearly56

identifiable “events”. Nevertheless, as Figure 1 makes clear, there is a continuous spectrum of57

fluctuation sizes from these events all the way to the smallest fluctuations present in the data.58

Therefore, we employ an alternative approach: studying the empirical probability distribution59

of all the available data points (as shown on the right in Figure 1). This is a widely-used60

approach in the study of extreme weather and climate events on shorter timescales (25, 26), but61

has only rarely been applied to the study of paleoclimate proxy records (27,28). In this context,62

it also has the additional advantage of being essentially insensitive to the specification of the63

underlying timescale.64

We focus on robust features of empirical probability distributions that quantify the tenden-65
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cies shown in Figure 1. Letting X denote an arbitrary random variable, the asymmetry in the66

distribution p(X) can be characterized by the skewness67

S = E

[(
X − E[X]

σ

)3
]
, (1)68

where E denotes expectation and σ the standard deviation. The tendency towards extreme69

events can be characterized by the excess kurtosis (hereafter, kurtosis):70

K = E

[(
X − E[X]

σ

)4
]
− 3. (2)71

A positive kurtosis indicates that the probability distribution p(X) is heavy-tailed compared to72

the normal distribution.73

Figure 2 shows the skewness and kurtosis of the δ18O and δ13C fluctuations in each epoch of74

the Cenozoic, together with 95% confidence intervals from a bootstrap analysis (Materials and75

Methods). The Paleocene-Eocene Thermal Maximum (PETM) has been removed, because of76

its apparent uniqueness (9) and because its magnitude dwarfs the rest of the Eocene variability to77

the extent that it would hinder objective analysis of the more general behavior. Previous studies78

have considered a running skewness and kurtosis of portions of the Cenozoic δ18O record to79

quantify the non-sinusoidal nature of glaciation cycles (27, 28). Here we choose to aggregate80

the data across epochs, because we are focused on the large-scale trends. The skewness and81

kurtosis values for δ18O fluctuations in a given epoch should be very close to those of the82

temperature fluctuations in that epoch (with the sign of the skewness reversed; see Materials83

and Methods). The shorter-term variability in skewness and kurtosis throughout the Cenozoic84

would be interesting to explore in future work; nevertheless, it should not affect the results we85

present here.86

Figure 2 reveals that δ18O and δ13C fluctuations have exhibited a substantial negative skew-87

ness and positive kurtosis throughout much of the Cenozoic. The negative skewness indicates88
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an asymmetry favoring negative fluctuations of δ18O and δ13C, while the positive kurtosis indi-89

cates a greater tendency towards extreme events than would be expected from a normal distri-90

bution. These observations are not an expected consequence of orbital forcing (Materials and91

Methods); we suggest instead that they arise from intrinsic features of the climate-carbon cycle92

system. They quantify the bias towards hyperthermal-like extreme events observed in Figure 1;93

the fact that this bias is not unique to the Eocene is in line with previous suggestions that Eocene94

hyperthermal events reflected mechanisms persisting throughout much of the Cenozoic (8, 9).95

Although the skewness of the δ18O and δ13C fluctuations varies in magnitude over time,96

its negative sign persists throughout all epochs prior to the Pliocene (5.3-2.6 Ma). During97

the Pliocene, the δ18O fluctuations instead become positively skewed. This change in sign is98

suggestive of a “switch” in the coupling of the climate and the carbon cycle, perhaps related to99

the onset of Northern Hemisphere glaciation (29). Finally, in the Pleistocene (2.6 Ma-present),100

the kurtosis of both δ18O and δ13C fluctuations decreases substantially; this indicates a lessened101

susceptibility to extreme events, and may thus reflect an increase in the stability of the climate-102

carbon cycle system.103

These observations become more intriguing when one considers the predicted skewness-104

kurtosis relationships for different classes of probability distributions. For example, Klaassen105

et al. (30) have shown that all unimodal distributions must satisfy106

K ≥ S2 − 186

125
. (3)107

A much more restrictive bound exists for the distribution of fluctuations produced by stochas-108

tic processes involving correlated additive-multiplicative noise (CAM noise, discussed further109

below) (26, 31, 32):110

K ≥ 3

2
S2 − r, (4)111

where r = 0 for single-variable systems and r has a small positive value for systems with112
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multiple variables (32) (Materials and Methods).113

Figure 2 shows that the δ18O and δ13C fluctuations before the Pleistocene satisfy not just114

the unimodal bound (3), but also tend to satisfy the much more restrictive one-variable CAM115

bound (4). Furthermore, many of the data points are consistent with the lognormal distribution116

(Materials and Methods), which emerges generally from a range of multiplicative processes117

(33). These observations suggest that key dynamics of the climate-carbon cycle system may be118

fruitfully described in terms of stochastic multiplicative noise.119

Multiplicative noise in the climate-carbon cycle system120

Stochastic models were first applied to the study of climate variability by Hasselmann (34), who121

used a model of the form122

dx

dt
= −1

τ
x+ νη(t) (5)123

to understand the “red” power spectrum of many weather and climate time series. Here, x124

represents the variable of interest, τ is the timescale on which negative feedbacks tend to return125

the system towards x = 0, and η(t) is Gaussian white noise (Materials and Methods). It is126

important to note that the white-noise term does not represent “true” stochasticity but is rather127

an approximation of the combined effects of many deterministic fluctuations that decorrelate on128

a timescale much shorter than that of the long-term climate variations being considered.129

In Eq. (5), the intrinsic fluctuations νη(t) have an amplitude that is independent of the130

system state x. This is referred to as “additive noise”, and causes the probability distribution131

of the output fluctuations, p(x), to be Gaussian (34, 35). In contrast, if the amplitude of the132

intrinsic fluctuations depends on the system state, we obtain the simple “multiplicative noise”133

model134

dx

dt
= −1

τ
x+ f(x)η(t). (6)135

If f(x) is an increasing function of x, the influence of the noise is greater when x is larger.136
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Consequently, Eq. (6) generates probability distributions p(x) that are asymmetric and have137

heavier tails than Gaussian distributions. Models that include multiplicative noise have been138

previously applied to study a wide range of climate problems (36–39), but on much faster139

timescales than those we consider here.140

A useful special case of a multiplicative noise model is obtained by linearizing the state141

dependence in Eq. (6) around x = 0. This yields a simple one-variable correlated additive-142

multiplicative (CAM) noise model:143

dx

dt
= −1

τ
x+ ν(x+ c)η(t). (7)144

Linear CAM noise models have been used to study extreme weather events (26, 31, 32) and are145

attractive in part due to their analytical tractability: the steady-state probability distribution p(x),146

as well as the kurtosis-skewness lower bound (4), can be straightforwardly derived (Materials147

and Methods). While the steady-state probability distribution for Eq. (5) is Gaussian, the148

steady-state distribution for Eq. (7) has an asymmetric non-Gaussian tail, in agreement with149

Figure 1. It further has kurtosis and skewness values that satisfy K ≥ 3
2
S2, consistent with the150

general behavior of δ18O and δ13C fluctuations prior to the Pleistocene (Figure 2).151

While the CAM noise model predicts a lower bound (4), an exact kurtosis-skewness rela-152

tionship emerges in the case of pure multiplicative fluctuations on a timescale much faster than153

the damping timescale τ . In this case, Eq. (7) reduces to154

dx

dt
= νxη(t), (8)155

and x will be lognormally distributed (Materials and Methods). The fact that many of the156

data points in Figure 2 are consistent with lognormal behavior thus underscores the potential157

significance of multiplicative noise in generating the hyperthermal-like extreme events observed158

throughout the Cenozoic. A schematic summarizing the behaviors of these simple models is159

shown in Figure 3.160
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Multiplicative noise could replicate the pre-Pliocene asymmetry favoring hyperthermal-like161

events if the amplitude of the intrinsic fluctuations increases as the δ18O and δ13C anomalies162

become more negative. What could be responsible for such a relationship in the global climate-163

carbon cycle system? One attractive possibility is that it reflects the effects of temperature164

(which is inversely related to δ18O) on biological and chemical reaction rates (Materials and165

Methods). The fast deterministic fluctuations that are approximated as intrinsic random noise166

involve biological and chemical processes, whose rates increase with temperature. In the con-167

text of Eq. (6), increasing these rates corresponds to increasing the amplitude of the random168

noise term; thus, it seems reasonable that increased global temperatures could increase the am-169

plitude of intrinsic fluctuations in the climate-carbon cycle system.170

If the amplitude of intrinsic fluctuations in the climate-carbon cycle system indeed exhibits a171

positive correlation with global temperature prior to the Pliocene, this should have left additional172

signatures in the geochemical record. We investigate this by dividing the Cenozoic δ18O time173

series into 0.5 Myr bins and testing for a negative relationship between the mean δ18O and an174

estimate of the amplitude of the intrinsic δ18O fluctuations in each bin (Materials and Methods).175

For each epoch, we compute rank correlation coefficients between these two variables, together176

with significance levels from a Monte Carlo permutation test. Table 1 shows that a negative177

relationship between the mean δ18O and the amplitude of the intrinsic fluctuations is indeed178

exhibited in each epoch. For the Eocene and Miocene, this relationship is statistically significant179

with p < 0.05, and combined p-values across all four epochs are also significant (Materials and180

Methods).181

These results suggest that the amplitude of intrinsic fluctuations in the climate-carbon cycle182

system may indeed have increased with temperature prior to the Pliocene, consistent with the183

multiplicative noise hypothesis stated above. Even though changes in global ice volume make184

an important contribution to the δ18O signal starting in the Oligocene, this inference remains185
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robust due to our use of rank correlations. Although the presence or absence of ice sheets186

modifies the δ18O-T relationship, to a good approximation the relationship remains linear within187

each epoch (Materials and Methods). Then, regardless of the details, a negative rank correlation188

in Table 1 will correspond to a positive rank correlation between mean temperature and the189

amplitude of fluctuations, with precisely the same magnitude and significance level (Materials190

and Methods).191

Stochastic climate-carbon cycle model192

To better understand how temperature-driven multiplicative noise in the climate-carbon cycle193

system would generate asymmetric extreme events in δ18O and δ13C like those in Figure 1, we194

develop a simple stochastic numerical climate-carbon cycle model (Materials and Methods).195

The model considers the evolution of global surface temperature and surficial inorganic carbon,196

aspects of ocean chemistry, the CO2 greenhouse effect, and the long-term weathering feedback,197

producing δ18O and δ13C output time series. It assumes that the amplitude of intrinsic random198

fluctuations in the surficial inorganic carbon reservoir, which are driven by temporary imbal-199

ances in the global production and oxidation of organic carbon, increases as the global mean200

temperature increases. We further include stochastic fluctuations in global mean temperature,201

and assume that they are partially correlated with these carbon cycle fluctuations.202

Figure 4 shows the result of forcing this model with 400 kyr eccentricity variations (Materi-203

als and Methods), using an ensemble of 100 trajectories; a single trajectory has been highlighted204

in black. The model generates a full spectrum of variability with hyperthermal-like extreme205

events (paired negative δ18O and δ13C excursions) that have a tendency to occur near eccen-206

tricity maxima, consistent with observations (4–11). Each individual extreme event occurs due207

to release of isotopically depleted organic carbon into the ocean-atmosphere system, consistent208

with prior suggestions (5–13,21–23); the tendency for orbital pacing arises through the effect of209
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the eccentricity forcing on the noise amplitude (Materials and Methods). Across the ensemble210

of different model realizations, key behaviors of the pre-Pliocene data in Figure 2 are repro-211

duced: the distribution of fluctuations in both proxies is negatively skewed, kurtosis tends to212

be positive, the skewness and kurtosis values behave in accordance with the lower bound for213

multivariable CAM noise models (4, see Methods) and many of the data fall near the lognormal214

line. Finally, the average slope of δ18O fluctuations with respect to the δ13C fluctuations is also215

consistent with the pre-Pliocene data (Materials and Methods).216

Discussion217

In this work, we have quantified general trends in the behavior of extreme events in the climate-218

carbon cycle system throughout the Cenozoic. We found that sub-Myr fluctuations in epochs219

prior to the Pliocene exhibited a fundamental asymmetry, favoring extreme events involving220

negative excursions in δ18O and δ13C. This is consistent with an implicit existing understanding221

that extreme climate-carbon cycle events have generally been “hyperthermal-like”. The fluctu-222

ations also tended to exhibit positive kurtosis, indicating an amplification of extreme events (i.e.223

a heavier tail) relative to the normal distribution. The quantitative persistence of both behav-224

iors throughout much of the Cenozoic, as shown in Figure 2, suggests that hyperthermal-like225

disruptions arise not only as interesting individual events but also as a general consequence of226

intrinsic features of the climate-carbon cycle system.227

Our results show that the behavior of extreme climate-carbon cycle events throughout the228

Cenozoic is well described in terms of stochastic multiplicative noise. Stochastic multiplicative229

noise fundamentally generates asymmetric non-Gaussian fluctuations in quantitative agreement230

with the observations. For example, the skewness and kurtosis of the observed Cenozoic δ18O231

and δ13C fluctuations tend to satisfy the lower bound K ≥ 3
2
S2 for fluctuations produced by232

correlated additive-multiplicative (CAM) noise (Figure 2), which is much more restrictive than233
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the requirement for unimodal distributions. Furthermore, intrinsic climate-carbon cycle fluc-234

tuations appear to increase in amplitude with decreasing δ18O prior to the Pliocene, exactly as235

expected for multiplicative noise (Table 1). Finally, a numerical climate-carbon cycle model in236

which the amplitude of fluctuations in the surficial carbon inventory increases with temperature237

is able to reproduce asymmetric hyperthermal-like extreme events, observed skewness-kurtosis238

relationships, δ18O-δ13C slopes, as well as the observed pacing of hyperthermal-like events by239

changes in orbital parameters (Figure 4).240

Beyond reproducing observations, the multiplicative noise perspective likely offers fun-241

damental insight into the real climate-carbon cycle system. Past modeling work has focused242

on understanding how carbon may be released from buried sedimentary sources (21–23), and243

on deducing the nature of the carbon release events responsible for specific isotopic excur-244

sions (15, 40). Multiplicative noise, on the other hand, provides a dynamical explanation of245

how and why hyperthermal-like events throughout the Cenozoic could have arisen generally246

from processes of carbon redistribution between Earth’s relatively accessible surficial reser-247

voirs. Specifically, it suggests that fluctuating imbalances in the global production and oxida-248

tion of organic carbon were amplified in the direction of carbon release by multiplicative effects,249

potentially due to the temperature dependence of biological and chemical reaction rates. The250

lognormal-like behavior of many observed (Figure 2) and simulated (Figure 4) data then further251

indicates that those multiplicative bursts were largely underdamped with respect to long-term252

stabilizing weathering feedbacks, consistent with a substantial timescale separation of the un-253

derlying processes.254

Finally, this study also provides a new framework within which to investigate differences255

between the different epochs of the Cenozoic. What is the origin of the many different behaviors256

observed in Figure 2? For example, why do δ13C fluctuations in the Eocene and Miocene ex-257

hibit a more negative skewness and a greater kurtosis than the corresponding δ18O fluctuations258
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while this trend is reversed in the Paleocene, and why is the magnitude of both the skewness259

and kurtosis lower in the Oligocene? The Pliocene fluctuations appear consistent with multi-260

plicative noise, but the changed sign of the δ18O asymmetry remains to be addressed; is this a261

consequence of the onset of Northern Hemisphere glaciation (29)? On the other hand, the much262

lower kurtosis of the Pleistocene system is inconsistent with multiplicative noise, suggesting263

that it has been in some way more stable. The development of glacial cycle oscillations (41–43)264

may have “seized control” of the climate-carbon cycle system, damping the processes that ear-265

lier led to the asymmetric amplification of extreme events. Interestingly, this suggests that this266

asymmetric amplification may return as anthropogenic warming continues and the Northern267

Hemisphere ice sheets disappear, making the Earth system more susceptible to extreme warm-268

ing events occurring on timescales of tens of thousands of years.269

Materials and Methods270

δ18O and δ13C fluctuations by epoch271

In this study we employ δ18O and δ13C data from the Cenozoic Global Reference benthic272

foraminifer carbon and oxygen Isotope Dataset (CENOGRID) (13). δ18O is inversely related to273

deep-sea temperature (see below), and δ13C records changes in the carbon cycle. We isolate sub-274

Myr fluctuations by subtracting a 1 Myr moving average from the data. For each geologic epoch275

within the Cenozoic (44), we calculate the skewness and kurtosis of the empirical distribution276

of fluctuations: because the number of data points per epoch is reasonably large (> 2000), we277

interpret the expected values in Eqs. (1) and (2) as straightforward sample averages. For non-278

Gaussian fluctuations, the sampled skewness and kurtosis across a given interval is strongly279

affected by how many of the more extreme events occur within that interval. Dividing the data280

by epoch allows us to keep these intervals as large as possible while still capturing long-term281

trends that can be related to the important changes occurring between epoch boundaries (e.g.282
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the onset of Northern Hemisphere glaciation in the Pliocene).283

We obtain 95% confidence intervals for our skewness and kurtosis estimates using a boot-284

strap method: letting N denote the number of data points in a given epoch, we create bootstrap285

samples of size N by randomly sampling from the observations with replacement, and then286

calculate that sample’s skewness and kurtosis. Repeating this procedure 1,000 times yields ap-287

proximate error distributions for skewness and kurtosis values: denoting the statistic of interest288

as x, the 95% confidence interval is [c1, c2], where P (x < c1) = P (x > c2) = 0.025.289

δ18O, temperature, and ice volume290

The relationship between temperature and the isotopic composition of foraminiferal calcite is291

typically parametrized as (45):292

T = a− b(δ18Ocalcite − δ18Owater), (9)293

where δ18Ocalcite and δ18Owater are the isotopic compositions of the calcite and the surrounding294

water, respectively, and a, b are constants. Because the growth of ice sheets increases δ18Owater,295

the benthic δ18O signal reflects both changes in temperature and in global ice volume. The296

relative importance of each factor changes throughout the Cenozoic, notably with the onset of297

Southern Hemisphere glaciation at the start of the Oligocene and the onset of Northern Hemi-298

sphere glaciation at the start of the Pliocene. Nevertheless, prior work suggests that the expres-299

sion300

T = α− βδ18Ocalcite (10)301

remains a good approximation: within different epochs, the presence or absence of ice sheets302

modifies the slope β and the offset α (46).303

Our analysis of the skewness and kurtosis of δ18O fluctuations in Figure 2 stands indepen-304

dently of the δ18O-T relationship. The linear relationship (10), however, greatly aids physical305
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interpretation. As long as α and β can be approximated as constant within a given epoch, the306

fluctuations in T have a skewness and kurtosis of precisely the same magnitude as the fluctua-307

tions of δ18O (the skewness will have the opposite sign).308

Role of orbital forcing309

On long timescales, the climate-carbon cycle system is forced by quasiperiodic variations in310

Earth’s orbital parameters. These variations have been calculated in detail (47, 48), and their311

imprint is evident in the δ18O and δ13C records (13). Precisely how the orbital variations actually312

force the climate-carbon cycle system has not yet been settled; past studies have highlighted the313

likely importance of low- to mid-latitude insolation changes (4, 49).314

We evaluate whether the orbital forcing could be responsible for the asymmetry and the315

non-Gaussian tails in δ18O and δ13C fluctuations (Figure 2) by analyzing the statistics of the or-316

bital solutions calculated in ref. (47). We would consider the orbital forcing to be “responsible”317

for these observations if the observations can be explained by a simple linear response of the318

climate-carbon cycle system, without nonlinear amplification. We generate time series of inso-319

lation from 100 Ma - present, sampled at a 1 kyr timestep; since we are focused on statistics,320

our argument does not depend on the specific time intervals chosen. The insolation variations321

at a given latitude are very close to Gaussian: this is demonstrated in Figure S1 for insolation at322

the equator and at 45◦N. There is a very modest skewness (much smaller than the skewnesses323

in Figure 2), and a negative kurtosis, rendering these variations insufficient for explaining the324

observation of a substantial skewness and positive kurtosis in the δ18O and δ13C fluctuations in325

terms of a linear response.326

It is worth noting that the average insolation received by the Earth over a whole year does327

exhibit fluctuations with a substantial skewness and kurtosis; a histogram is plotted in Figure328

S2. This is a straightforward consequence of near-Gaussian fluctuations in the eccentricity,329
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e, and the mean annual insolation scaling as 1/
√

1− e2 (50). However, this behavior is also330

insufficient for explaining the observed asymmetry and heavy tails in the fluctuations in δ18O331

and δ13C, for multiple reasons. First, when considering orbital forcing of the climate-carbon332

cycle system, the mean annual insolation is likely not the relevant quantity, as discussed above.333

Second, the magnitude of these variations is far too small (∼ 0.8 W/m2) to account for the334

magnitude of the observed extreme events (e.g. in δ18O), without nonlinear amplification of335

some kind. Third, the skewed heavy tail in the mean insolation represents eccentricity variations336

on timescales & 100 kyr, while the skewed non-Gaussian tail in the δ18O and δ13C observations337

represents fluctuation events occurring on shorter timescales. Finally, the kurtosis of the mean338

annual insolation variations falls far below that predicted by the CAM bound K ≥ 3
2
S2 (Figure339

S2): even without the problems discussed above, it would still need to be explained why the340

observations behave differently. These considerations suggest that mechanisms intrinsic to the341

climate-carbon cycle system play a dominant role in generating the observed asymmetric non-342

Gaussian tails in the δ18O and δ13C fluctuations.343

Stochastic multiplicative noise theory344

In equations (5), (6), (7), and (8), η(t) is delta-correlated Gaussian white noise satisfying345

〈η(t1)η(t2)〉 = δ(t1 − t2) and 〈η(t)〉 = 0. It is also important to note that throughout this paper346

we have chosen to interpret stochastic differential equations using the Itô calculus; conversion347

to the related Stratonovich calculus is straightforward (35).348

The steady-state probability distribution for the additive noise model (5) is straightforwardly349

obtained by integrating the corresponding Fokker-Planck equation (35): it is the Gaussian dis-350

tribution351

p(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (11)352

with µ = 0 and σ2 = τν2/2. The steady-state distribution for the one-variable CAM model (7)353
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is obtained similarly, yielding354

p(x) ∝ exp

(
− 2c

τν2(x+ c)

)
(x+ c)−2(1+ 1

τν2
). (12)355

The K ≥ 3
2
S2 relationship (4), as well as the steady-state distribution (12) are derived in ref.356

(32). Because of the importance of these results to this paper, and because we have used slightly357

different notation as well as a different stochastic calculus, the Supplementary Material includes358

a derivation of both results directly from Eq. (7). The relationship K ≥ 3
2
S2 − r can be359

further obtained for multivariable linear systems with CAM noise under the assumption that the360

operator describing the deterministic evolution is non-normal; for a derivation, and a discussion361

of the validity of this assumption in geophysical contexts, the reader is referred to ref. (32).362

The lognormal distribution arises from a range of multiplicative processes, in part due to363

the central limit theorem (33). In the context of Eq. (8), its appearance can be understood364

by substituting y = log x and noting that y evolves according to an additive noise process,365

thus obeying the normal distribution (35, 51). The solution to Eq. (8) obeys the lognormal366

distribution367

p(x) =
1

σx
√

2π
exp

(
−(lnx− µ)2

2σ2

)
, (13)368

where µ = log(x(t = 0)) − 1
2
ν2t and σ2 = ν2t. The kurtosis-skewness relationship can then369

described parametrically through the expressions (33):370

S = (exp(σ2) + 2)
√

exp(σ2)− 1, (14)371

372

K = exp(4σ2) + 2 exp(3σ2) + 3 exp(2σ2)− 6. (15)373

The plotted line in Figure 2 incorporates both the cases where logX and log(−X) are normally374

distributed. In the latter case, the skewness (14) changes sign.375
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Effect of temperature on reaction rates376

Multiplicative noise could replicate the pre-Pliocene asymmetry favoring hyperthermal-like377

events if the amplitude of intrinsic fluctuations increases as the δ18O anomaly decreases (i.e.378

temperature increases). The deterministic processes in the climate-carbon cycle system that379

we are approximating as random noise involve biological and chemical processes, whose rates380

would increase as temperature increases. The rates of many chemical reactions increase with381

temperature according to the Arrhenius relationship (52)382

k ∝ exp

(
− Ea

kbT

)
, (16)383

where Ea is an activation energy and kb is Boltzmann’s constant. Similar behavior may apply to384

the biologically mediated reactions that constitute the global carbon cycle (53,54). We therefore385

argue that it is reasonable to expect the amplitude of intrinsic fluctuations within the global386

carbon cycle to increase with temperature; our analysis of the δ18O record provides further387

tentative evidence supporting this (Table 1).388

Further signatures of multiplicative noise in Cenozoic δ18O data389

To interrogate the observations for further signatures of multiplicative noise, we investigate how390

the amplitude of the intrinsic fluctuations in the δ18O record changes with the 1-Myr mean of391

δ18O in all of the data prior to the Pliocene. The simplest possible metric of this amplitude392

would be the standard deviation of δ18O about the long-term mean, but across any given time393

interval this will be strongly affected by the number of extreme events that occur. Because these394

extreme events almost uniformly occur in the direction of negative δ18O, we can remove them395

from our estimate of the magnitude of the intrinsic fluctuations by considering only the positive396

fluctuations above the mean; a similar approach was employed in ref. (49). We divide the δ18O397

time series into 0.5 Myr bins and for each bin calculate the mean δ18O as well as the standard398
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deviation of the positive fluctuations.399

We test for a monotonic relationship between the binned means and fluctuation amplitudes400

across each epoch by calculating Spearman rank correlation coefficients (55). Significance lev-401

els are calculated using a Monte Carlo permutation test: randomly re-order the relationships402

between the binned means and amplitudes, and then re-calculate the correlation coefficients.403

Repeating this procedure 10,000 times yields a distribution of rank correlation coefficients un-404

der the null hypothesis that the mean δ18O and the fluctuation amplitude in each bin are un-405

correlated. The significance levels for the observed rank correlations are then straightforwardly406

calculated from this distribution.407

We find a negative relationship between δ18O and the fluctuation amplitude, consistent with408

the behavior required to generate the asymmetric non-Gaussian tails in Figure 2. For the Eocene409

and Miocene epochs, these negative rank correlations are statistically significant with p < 0.05.410

Although the negative δ18O-fluctuation relationships observed in the Paleocene and Oligocene411

epochs are not statistically significant at this level given those data alone, we note that combined412

p-values that take into account all four of the epochs considered are very small: p < 9 × 10−6
413

using Fisher’s method (56), and p < 4× 10−5 using the harmonic mean (57).414

Because of the negative relationship between δ18O and temperature, this result is consis-415

tent with the temperature-driven multiplicative noise hypothesis. While decreasing δ18O corre-416

sponds to increasing T throughout the Cenozoic, the precise shape of this relationship has been417

affected by the presence of ice sheets, starting in the Oligocene. Nevertheless, the use of a rank418

correlation means that the results in Table 1 can be robustly interpreted in terms of temperature.419

As long as δ18O(T ) is monotonically decreasing within each epoch considered, the rank orders420

of the binned mean values will stay the same. As long as δ18O(T ) is approximately linear within421

each epoch considered (as suggested, e.g. by ref. (46)), the rank orders of the binned fluctua-422

tion amplitudes will stay the same. If the rank orders remain the same, the negative correlation423
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coefficients for δ18O in Table 1 become positive correlation coefficients for T with precisely the424

same magnitude and significance levels.425

Finally, it is possible that the Miocene result in Table 1 is affected by the near-ice-free426

conditions of the mid-Miocene Climatic Optimum: the slope of the δ18O-T relationship could427

have changed during this time. Because the δ18O-T relationship becomes less steep in an ice-428

free period, this could introduce a positive bias into the correlation between mean δ18O and429

δ18O fluctuations. Since we have observed a negative correlation, however, (Table 1) our basic430

result (amplitude of fluctuations increasing with global temperature) remains robust.431

Stochastic climate-carbon cycle model432

Our stochastic climate-carbon cycle model considers the total amount of ocean-atmosphere433

inorganic carbon I , the deviation of the global mean surface temperature from a long-term434

stable state, ∆T , and the amount of ocean-atmosphere inorganic 13C, I13. Note that “long-435

term” here refers to timescales of millions of years or greater. We do not consider changes in436

this long-term stable state (e.g. due to tectonic processes), as we are focused on the sub-Myr437

fluctuations.438

On timescales of hundreds of thousands of years, I is widely thought to be controlled by a439

stabilizing feedback provided by the weathering of carbonate and silicate rocks (58,59). Defin-440

ing I0 as the long-term steady-state value of I (all parameter values are given in the next section),441

this stabilizing feedback can be simply parametrized as442

dI

dt
= −(I − I0)

τ
, (17)443

where τ is the characteristic timescale of the weathering feedback. Following the analysis in444

the main text, we include fluctuations in I that arise from imbalances in the production and445

oxidation of organic carbon, and assume that the amplitude of these fluctuations increases with446

19



temperature. We parametrize this as correlated additive-multiplicative noise, leading to the447

equation448

dI

dt
= −(I − I0)

τ
+ νC(∆T + c)η(t). (18)449

Here η(t) is a Gaussian white noise process as described above, and νC and c control the strength450

of the temperature dependence as well as the amplitude of the noise at ∆T = 0.451

The global reservoir of organic carbon, which grows when η(t) < 0 (net production) and452

shrinks when η(t) > 0 (net oxidation), is left implicit. We consider this global reservoir to453

consist of the sum total of relatively accessible surficial organic carbon stocks, such as dissolved454

organic carbon (8, 24). This implicit formulation is reasonable in part because the fluctuation455

term νC(∆T + c)η(t) in Eq. (18) has mean zero and does not contribute to any mean drift in I;456

in other words, on average it acts as neither a source nor sink of inorganic carbon.457

The deterministic evolution of global mean surface temperature is determined by the bal-458

ance of incoming and outgoing radiation; because outgoing radiation is approximately linear in459

surface temperature and log CO2 for a wide range of parameters (60), this can be parametrized460

as461

d∆T

dt
=

1

C

(
−a1(∆T ) + a2 log

(
P (I)

P0

))
. (19)462

Here C denotes the surface heat capacity, P denotes the atmospheric CO2 concentration, P0 is463

the steady-state CO2 concentration, and a1 and a2 are constants. P is obtained directly from464

I and ocean carbonate chemistry under the assumption that total alkalinity remains constant465

(Supplementary Material). We also introduce stochastic fluctuations in global mean surface466

temperature that are partially correlated with those in Eq. (18). The full temperature evolution467

equation is then468

d∆T

dt
=

1

C

(
−a1(∆T ) + a2 log

(
P (I)

P0

))
+ νT (∆T + c)η(t) + µξ(t). (20)469

Here, η(t) is the same Gaussian white noise process as in Eq. (18), while ξ(t) is Gaussian white470
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noise independent of η(t). Their amplitudes are controlled by the parameters νT and µ.471

Our model for the evolution of δ13C values follows in spirit from those of refs. (24, 61),472

although here we express our equations in terms of an explicit 13C variable for reasons of nu-473

merical stability. The evolution of ocean-atmosphere inorganic 13C, I13, follows mechanistically474

from Eq. (18). We decompose the weathering feedback term −(I − I0)/τ into an incoming475

flux I0/τ of carbonate carbon with isotopic composition δc and an outgoing flux I/τ with the476

isotopic composition of the surficial inorganic carbon reservoir. The deterministic evolution of477

I13 is then given by:478

dI13
dt

= −(I13 − I0Rc)

τ
. (21)479

where Rc represents the 13C/(12C+13C) ratio corresponding to δc. Neglecting the small differ-480

ence between 13C/12C and 13C/(12C+13C), this conversion is carried out using481

R = Rstd

(
1 +

δ

1000

)
, (22)482

where Rstd represents the VPDB standard.483

Finally, Eq. (21) also needs to account for the stochastic fluctuations in Eq. (18), νC(∆T +484

c)η(t). Letting δi denote the isotopic composition of the inorganic carbon reservoir, these fluc-485

tuations would either remove carbon with an isotopic composition δi − ε (where ε > 0 de-486

notes fractionation) or add organic carbon with an isotopic composition δo. On the sub-Myr487

timescales and for the relatively small changes we are concerned with, it is reasonable to as-488

sume that δo = δi − ε with ε constant, leading directly to489

dI13
dt

= −(I13 − I0Rc)

τ
+ νC(∆T + c)Roη(t), (23)490

where Ro denotes the 13C/(12C+13C) ratio corresponding to δo.491

The model is fully specified by Eqs. (18), (20), and (23). Once it has been run, a δ18O time492

series is obtained (with an arbitrary offset) as493

δ18O(t) = −∆T (t)

4.8
, (24)494
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where the conversion constant (45) is for ice-free conditions (e.g. the Eocene). The appropri-495

ate linear conversion constants for different time periods within the Cenozoic can be found in496

ref. (46). As noted earlier, as long as the relationship remains linear the choice of conversion497

constant does not affect the skewness and kurtosis of the empirical distribution of fluctuations.498

Finally, a δ13C time series is obtained as499

δ13C(t) =

(
I13(t)/I(t)

Rstd

− 1

)
× 1000. (25)500

The model is implemented in Julia using the package DifferentialEquations.jl (62), and inte-501

grated using an Euler-Maruyama algorithm. Full model code is available at502

https://github.com/arnscheidt/asymmetric-cenozoic-extreme-events.503

Model parameter values504

The parameter values used in the model are I0 = 38000 Pg, τ = 100 kyr, C = 2×10−8 J/m2/K,505

P0 = 400 µatm, δc = 1h, δo = −25h, νT = 0.2 yr−1/2, νC = 1.0 yr−1/2, c = 1.0 K, µ = 0.4506

K/yr−1/2, a1 = 2.2 W/m2/K. Since the steady state of the deterministic temperature evolution507

equation (19) reduces to508

∆T =
a2
a1

log

(
P

P0

)
, (26)509

it is convenient to let a2 be expressed in terms of a1 and the long-term temperature response of510

the Earth system to a doubling of CO2, λ:511

a2
a1

=
λ

log(2)
. (27)512

Here, we use λ = 5 K, consistent with its interpretation as an “Earth system sensitivity”, e.g. in513

the sense of ref. (63).514
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Forcing the model with changes in insolation515

Periodic insolation forcing is implemented by modifying the temperature evolution equation to516

read517

d∆T

dt
=

1

C

(
−a1(∆T − F (t)) + a2 log

(
P (I)

P0

))
+ νT (∆T + c)η(t). (28)518

where F (t) is a time-varying function that sets the “effective steady-state” temperature. With519

this formulation, for I near I0, the system will radiatively adjust towards the temperature of520

T0 + F (t). For the demonstration in Figure 4, we use a simple eccentricity-like forcing521

F (t) = 3 sin

(
2πt

400 kyr

)
. (29)522

The tendency of the extreme events in Figure 4 to be paced by variations in eccentricity523

arises because the amplitude of the intrinsic random fluctuations in our climate-carbon cycle524

model increases at higher temperatures, making extreme events more likely. Note that the an-525

nual mean insolation variations due to eccentricity are not directly large enough to cause surface526

temperature changes of the magnitude implied by Eq. (29). However, the climate-carbon cycle527

system likely contains mechanisms that transfer power from precession to eccentricity frequen-528

cies (49,64). If hyperthermal-like extreme events indeed occur due to multiplicative noise in the529

climate-carbon cycle system, then as long as eccentricity interacts in some way with the noise530

amplitude, the extreme events will tend to be paced by it.531

Kurtosis and skewness of model output trajectories532

The skewness and kurtosis values plotted in Figure 4 obey the bound in Eq. (4) with r ' 0.9,533

which is the value used for the bound plotted in the figure. This is consistent with expecta-534

tions for multivariable models containing CAM noise (32), but also presents a slightly weaker535

constraint than the single-variable CAM bound plotted in Figure 2, which has r = 0. The fact536
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that much of the observed data in Figure 2 satisfies the stronger constraint may therefore be of537

further significance, and deserves to be explored in future work.538

Slope of δ18O versus δ13C fluctuations539

We estimate the slope of the δ18O fluctuations versus δ13C fluctuations using reduced major axis540

regression, which is the appropriate choice when both variables contain uncontrolled errors (65).541

The relationship between δ18O and δ13C changes throughout the Cenozoic has been considered542

previously (13); however, here we focus on the sub-Myr fluctuations (i.e. with the long-term543

trend removed). Figure 4 shows that the model produces δ18O-δ13C slopes consistent with pre-544

Pliocene observations. Scatterplots of the observational data, together with the corresponding545

regression lines, are shown in the Supplementary material; it is worth noting that the sign of546

the slope reverses at the start of the Pliocene, providing further evidence for a switch in the547

coupling of the climate and the carbon cycle at this time (29).548
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and J. C. Zachos, “Scaled biotic disruption during early Eocene global warming events,”586

Biogeosciences, vol. 9, no. 11, pp. 4679–4688, 2012.587

13. T. Westerhold, N. Marwan, A. J. Drury, D. Liebrand, C. Agnini, E. Anagnostou, J. S.588

Barnet, S. M. Bohaty, D. De Vleeschouwer, F. Florindo, T. Frederichs, D. A. Hodell, A. E.589

Holbourn, D. Kroon, V. Lauretano, K. Littler, L. J. Lourens, M. Lyle, H. Pälike, U. Röhl,590
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H. Pälike, S. J. Batenburg, F. J. Hilgen, D. A. Hodell, C. E. Huck, D. Kroon, I. Raffi, ,633

M. J. M. Saes, A. E. van Dijk, and L. J. Lourens, “Evolution of the early Antarctic ice634

ages,” Proceedings of the National Academy of Sciences, vol. 114, no. 15, pp. 3867–3872,635

2017.636

28. D. Liebrand and A. T. M. de Bakker, “Bispectra of climate cycles show how ice ages are637

fuelled,” Climate of the Past, vol. 15, no. 6, pp. 1959–1983, 2019.638

29. S. K. Turner, “Pliocene switch in orbital-scale carbon cycle/climate dynamics,” Paleo-639

ceanography, vol. 29, no. 12, pp. 1256–1266, 2014.640

30. C. A. Klaassen, P. J. Mokveld, and B. Van Es, “Squared skewness minus kurtosis bounded641

by 186/125 for unimodal distributions,” Statistics & probability letters, vol. 50, no. 2,642

pp. 131–135, 2000.643

28



31. P. Sura and P. D. Sardeshmukh, “A global view of non-Gaussian SST variability,” Journal644

of Physical Oceanography, vol. 38, no. 3, pp. 639–647, 2008.645

32. P. D. Sardeshmukh and P. Sura, “Reconciling non-Gaussian climate statistics with linear646

dynamics,” Journal of Climate, vol. 22, no. 5, pp. 1193–1207, 2009.647

33. K. Shimizu and E. L. Crow, “History, Genesis, and Properties,” in Lognormal distributions:648

Theory and Applications (E. L. Crow and K. Shimizu, eds.), ch. 1, pp. 1–26, New York:649

Marcel Dekker, 1988.650

34. K. Hasselmann, “Stochastic climate models part I. Theory,” tellus, vol. 28, no. 6, pp. 473–651

485, 1976.652

35. C. W. Gardiner, Stochastic methods: A Handbook for the Natural and Social Sciences,653

vol. 4. Springer Berlin, 2009.654

36. I. Rodriguez-Iturbe, D. Entekhabi, and R. L. Bras, “Nonlinear dynamics of soil moisture at655

climate scales: 1. Stochastic analysis,” Water Resources Research, vol. 27, no. 8, pp. 1899–656

1906, 1991.657

37. A. J. Majda, I. Timofeyev, and E. V. Eijnden, “Models for stochastic climate prediction,”658

Proceedings of the National Academy of Sciences, vol. 96, no. 26, pp. 14687–14691, 1999.659

38. P. Sura, M. Newman, C. Penland, and P. Sardeshmukh, “Multiplicative noise and non-660

Gaussianity: A paradigm for atmospheric regimes?,” Journal of the atmospheric sciences,661

vol. 62, no. 5, pp. 1391–1409, 2005.662

39. W. Moon and J. S. Wettlaufer, “A stochastic dynamical model of Arctic sea ice,” Journal663

of Climate, vol. 30, no. 13, pp. 5119–5140, 2017.664

29



40. S. K. Turner, “Constraints on the onset duration of the Paleocene–Eocene Thermal Max-665

imum,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and666

Engineering Sciences, vol. 376, no. 2130, p. 20170082, 2018.667

41. C. Emiliani, “Pleistocene temperatures,” The Journal of Geology, vol. 63, no. 6, pp. 538–668

578, 1955.669

42. J. Imbrie, J. D. Hays, D. G. Martinson, A. McIntyre, A. C. Mix, J. J. Morley, N. G. Pisias,670

W. L. Prell, and N. J. Shackleton, “The orbital theory of Pleistocene climate: support from a671

revised chronology of the marine d18O record,” in Milankovitch and Climate, Part I (A. L.672

Berger, ed.), pp. 269–305, D. Reidel Publishing Company, 1984.673

43. L. E. Lisiecki and M. E. Raymo, “A Pliocene-Pleistocene stack of 57 globally distributed674

benthic δ18O records,” Paleoceanography, vol. 20, no. 1, 2005.675

44. F. M. Gradstein, J. G. Ogg, M. B. Schmitz, and G. M. Ogg, eds., The Geologic Time Scale676

2012. Elsevier, 2012.677

45. B. E. Bemis, H. J. Spero, J. Bijma, and D. W. Lea, “Reevaluation of the oxygen isotopic678

composition of planktonic foraminifera: Experimental results and revised paleotemperature679

equations,” Paleoceanography, vol. 13, no. 2, pp. 150–160, 1998.680

46. J. Hansen, M. Sato, G. Russell, and P. Kharecha, “Climate sensitivity, sea level and atmo-681

spheric carbon dioxide,” Philosophical Transactions of the Royal Society A: Mathematical,682

Physical and Engineering Sciences, vol. 371, no. 2001, p. 20120294, 2013.683

47. J. Laskar, P. Robutel, F. Joutel, M. Gastineau, A. Correia, and B. Levrard, “A long-term684

numerical solution for the insolation quantities of the Earth,” Astronomy & Astrophysics,685

vol. 428, no. 1, pp. 261–285, 2004.686

30



48. J. Laskar, A. Fienga, M. Gastineau, and H. Manche, “La2010: a new orbital solution for687

the long-term motion of the Earth,” Astronomy & Astrophysics, vol. 532, p. A89, 2011.688

49. R. E. Zeebe, T. Westerhold, K. Littler, and J. C. Zachos, “Orbital forcing of the Paleocene689

and Eocene carbon cycle,” Paleoceanography, vol. 32, no. 5, pp. 440–465, 2017.690

50. A. Berger and M. Loutre, “Precession, eccentricity, obliquity, insolation and paleocli-691

mates,” in Long-Term Climatic Variations, pp. 107–151, Springer, 1994.692

51. B. Dennis and G. P. Patil, “Applications in Ecology,” in Lognormal distributions: Theory693

and Applications (E. L. Crow and K. Shimizu, eds.), ch. 12, pp. 303–330, New York:694

Marcel Dekker, 1988.695
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Figure 1: Climate-carbon cycle disruptions in the early Eocene, as recorded in benthic756

foraminiferal δ18O and δ13C data (13). A one-million year running mean has been subtracted757

to isolate the sub-Myr fluctuations. (A) and (B) show time series, while (C) and (D) show758

histograms of the data points. The largest hyperthermals manifest as extreme events in an759

empirical probability distribution with an asymmetric non-Gaussian tail (near the asterisks in760

C and D). This asymmetry quantifies an apparent bias towards extreme events involving global761

warming and oxidation of organic carbon. Note that the vertical axes decrease upwards.762
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Figure 2: Skewness and kurtosis of sub-Myr δ18O and δ13C fluctuations in the Cenozoic.764

(A) The data organized by epoch (Pal=Paleocene, Eo=Eocene, Ol=Oligocene, Mio=Miocene,765

Plio=Pliocene, Plei=Pleistocene). Error bars denote 95% confidence intervals (Materials and766

Methods). All pre-Pliocene data exhibit negative skewness, indicating an asymmetry that favors767
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hyperthermal-like events. They also generally exhibit a positive kurtosis, indicating a greater768

tendency towards extreme events than would be expected from a normal distribution. (B) The769

data in skewness-kurtosis space. Shading indicates lower bounds for different classes of prob-770

ability distributions: distributions produced by correlated additive-multiplicative (CAM) noise771

processes cannot fall outside of the white region (31) (Materials and Methods), while unimodal772

distributions cannot fall in the dark gray region (30). Prior to the Pleistocene, the data tend to773

satisfy the more restrictive CAM bound. Many of the data are consistent with the lognormal774

distribution (black line), which is a further characteristic of multiplicative processes. These775

observations indicate that key dynamics of the system may be fruitfully described in terms of776

stochastic multiplicative noise.777
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Figure 3: Schematic summarizing stochastic models discussed in the text. (A) An additive779

noise model (34): here, the noise amplitude is independent of the system state. This produces780

a Gaussian distribution of fluctuations, with K,S = 0. (B) Correlated-additive-multiplicative781

(CAM) noise (7) generates asymmetric non-Gaussian distributions satisfying K ≥ 3
2
S2, con-782
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sistent with the pre-Pleistocene data in Figure 2. (C) Undamped multiplicative noise produces a783

lognormal distribution of fluctuations, which also has an asymmetric non-Gaussian tail. There784

exists an exact parametrizable K(S) relationship (Materials and Methods): it is plotted in Fig-785

ure 2 and intersects a number of the data points.786
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Epoch
Rank correlation between δ18O and
intrinsic fluctuation amplitude

p

Miocene -0.737 < 10−5

Oligocene -0.157 0.247
Eocene -0.256 0.045

Paleocene -0.382 0.060

Table 1: Relationship between mean δ18O and amplitude of intrinsic fluctuations. This is
quantified in terms of a rank correlation (Materials and Methods). In each epoch, the amplitude
of underlying fluctuations increases with decreasing δ18O, consistent with the multiplicative
noise hypothesis. For the Eocene and Miocene, this relationship is statistically significant when
considering only the data from that epoch (p < 0.05), but combined p-values across all four
epochs are also statistically significant (Materials and Methods).
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Figure 4: Numerical model results. (A) An ensemble of 100 trajectories obtained by forc-788

ing the stochastic climate-carbon cycle model with 400kyr eccentricity variations. A single789

trajectory is highlighted in black. The model generates a full spectrum of variability with790

hyperthermal-like extreme events (paired negative δ18O and δ13C excursions) that have a ten-791

dency to occur near eccentricity maxima, consistent with observations (4–11). (B) Skewness792

and kurtosis values for the different ensemble trajectories, together with the bound for uni-793

modal PDFs (30), the multivariable CAM noise bound (4, see Materials and Methods), and794

the relationship for the lognormal distribution; we observe similar behavior to the pre-Pliocene795

observations in Figure 2. (C) Scatter plot of δ18O versus δ13C from all of the model output796

together with a linear regression, and the corresponding regression lines for the pre-Pliocene797

observations (Materials and Methods); there is again good agreement.798
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Figure S1: Statistics of insolation at the equator and 45◦ N in the La2004 solution
(47). There is a mild skewness and negative kurtosis in both cases, suggesting
that these variations are insufficient for explaining the large skewness and positive
kurtosis observed in Figure 2 of the main text.
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Figure S2: Statistics of mean annual insolation in the La2004 solution (47). This
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for explaining the observations in Figure 2 of the main text for multiple reasons;
see Materials and Methods.

One-variable CAM noise model derivations

Derivations of the steady-state distribution and the K ≥ 3
2
S2 bound are presented in ref. (32). Since this

paper employs different notation and a different choice of stochastic calculus, derivations of both results

directly from Eq. 7 of the main text are presented here for convenience.

Steady-state distribution

The simple one-component CAM noise model is

dx

dt
= −1

τ
x+ ν(x+ c)η(t). (1)

The corresponding Fokker-Planck equation for the probability distribution p(x, t|x(t = t0), t0) is given by

∂p

∂t
=

∂

∂x

(
−1

τ
xp

)
+

1

2

∂2

∂x2
(
ν2(x+ c)2p

)
. (2)

2



In the steady state,
∂

∂x

(
−1

τ
xp

)
+

1

2

∂2

∂x2
(
ν2(x+ c)2p

)
= 0. (3)

Integrating, we obtain [
−1

τ
xp+

1

2

∂

∂x

(
ν2(x+ c)2p

)]x
−∞

= 0. (4)

Since p and ∂p
∂t

must vanish at x = −∞, we obtain

∂

∂x
(ν2(x+ c)2p) = −2

τ
xp, (5)

i.e.

p
∂

∂x
(ν2(x+ c)2) + (ν2(x+ c)2)

∂

∂x
p = −2

τ
xp, (6)

such that
∂

∂x
p = − 2

ν2(x+ c)2

(
1

τ
x+ ν2(x+ c)

)
p. (7)

This yields

p(x) ∝ exp

(
−2
∫
dx

x

τν2(x+ c)2
+

1

(x+ c)

)
, (8)

= exp

(
− 2

τν2

∫
dx

(
x+ c

(x+ c)2
− c

(x+ c)2

)
− 2 ln(x+ c)

)
, (9)

= exp

(
− 2

τν2

∫
dx

(
1

(x+ c)
− c

(x+ c)2

)
− 2 ln(x+ c)

)
, (10)

= exp

(
2

τν2

∫
dx

c

(x+ c)2
− 2

(
1 +

1

τν2

)
ln(x+ c)

)
, (11)

ultimately becoming

p(x) ∝ exp

(
− 2c

τν2(x+ c)

)
(x+ c)−2(1+

1
τν2

). (12)

Kurtosis-skewness bound

Although we do not include it in this derivation, it should be noted that the kurtosis-skewness bound is

also valid if an additional uncorrelated noise term is included in Eq. 7 of the main text (32). We start from

3



the integrated steady-state Fokker-Planck equation:

∂

∂x
(ν2(x+ c)2p) = −2

τ
xp, (13)

Moments can be calculated by multiplying each side by xn−1 and integrating:

〈xn〉 = −
∫ ∞
−∞

dx

(
xn−1

τ

2

∂

∂x
(ν2(x+ c)2p).

)
(14)

Integrating by parts:

〈xn〉 = τν2

2

(
−
[
xn−1(x+ c)2p

]∞
−∞ +

∫ ∞
−∞

dx(x2 + c2 + 2cx)p
∂

∂x
xn−1

)
. (15)

〈xn〉 only exists if the term in square brackets does not diverge. To proceed further, we assume that this is

true, providing us with the condition (n− 1) < 2
τν2

, from Eq. 12. Now, we immediately have 〈x〉 = 0. For

higher powers (n ≥ 2):

〈xn〉 = τν2

2
(n− 1)

∫ ∞
−∞

dx(xn + c2xn−2 + 2cxn−1)p. (16)

〈xn〉 = τν2

2
(n− 1)

(
〈xn〉+ c2〈xn−2〉+ 2c〈xn−1〉

)
. (17)

This finally leads to

(
1

τν2
− n− 1

2

)
〈xn〉 = (n− 1)

2

(
c2〈xn−2〉+ 2c〈xn−1〉

)
. (18)

The variance is given by

σ2 = 〈x2〉 = c2

−1 + 2
τν2

. (19)

Considering the third and fourth moments, we have:

(
1

τν2
− 1

)
〈x3〉 =

(
c2〈x〉+ 2c〈x2〉

)
, (20)
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(
1

τν2
− 3

2

)
〈x4〉 = 3

2

(
c2〈x2〉+ 2c〈x3〉

)
. (21)

The excess kurtosis K is given by

K =
〈x4〉
〈x2〉2 − 3 =

3

2
(

1
τν2
− 3

2

) (c2〈x2〉−1 + 2c〈x3〉〈x2〉−2
)
− 3, (22)

and the skewness S by

S =
〈x3〉
〈x2〉3/2 =

1(
1
τν2
− 1
) (2c〈x2〉−1/2) . (23)

Substituting Eq. 23 into Eq. 22, we have

K =
〈x4〉
〈x2〉2 − 3 =

3

2
(

1
τν2
− 3

2

) (c2〈x2〉−1 + 2cS〈x2〉− 1
2

)
− 3. (24)

Again, using Eq. 23:

K =
3

2
(

1
τν2
− 3

2

) (c2〈x2〉−1 + ( 1

τν2
− 1

)
S2

)
− 3. (25)

Now, using Eq. 19:

K =
3

2
(

1
τν2
− 3

2

) (( 2

τν2
− 1

)
+

(
1

τν2
− 1

)
S2

)
− 3. (26)

Rearranging:

K =
3
(

1
τν2
− 1
)

2
(

1
τν2
− 3

2

)S2 + 3

( 1
τν2
− 1

2
1
τν2
− 1
− 1

)
. (27)

Recalling the condition for 〈xn〉 to exist, (n−1) < 2
τν2

, and noting that we have assumed this up to n = 4,

this reduces to

K ≥ 3

2
S2. (28)

Approximating atmospheric CO2 as function of total surficial carbon

To close the equations that constitute our stochastic climate-carbon cycle model, we need to obtain P

(atmospheric CO2) as a function of I (total surficial inorganic carbon). We accomplish this by considering

the atmosphere and ocean as two boxes between which CO2 can move freely, and assuming that total

5



alkalinity is fixed. In equilibrium, the air-ocean partitioning of CO2 is governed by Henry’s law

[CO2] = K0P, (29)

where the difference between pressure and fugacity has been neglected. Now, we can write I as the sum

of inorganic atmosphere and ocean carbon:

I = mcV ρ[DIC] +MaP, (30)

where P is measured in atm, DIC refers to total dissolved inorganic carbon, mc = 12/1000 kg/mol, ρ

is the density of seawater (1027 kg/m3), V is ocean volume (1.34 ×1018 m3), and Ma is the mass of the

atmosphere (5.13× 1018 kg). The last two values are obtained from the Appendix of ref. (66)

Equation 30 cannot yield an accurate closed form solution for P (I) with constant alkalinity, but it can

be solved for P (I) with constant pH. We neglect the temperature dependence of the equilibrium constants.

Following, for example, ref. (67), Eq. 30 can be re-written as

I =

(
mcV ρK0

(
1 +

K1

h
+
K1K2

h2

)
+Ma

)
P, (31)

where h = [H3O+], and K1, K2 are the first and second dissociation constants of the carbonate system in

seawater. This yields

P (I, h) =
I

(mcV ρK0(1 +
K1

h
+ K1K2

h2
) +Ma)

. (32)

Then, P (I)|alk fixed can be approximated numerically by calculating the alkalinity as a function of I, h and

evaluating P (I, h) along a contour of constant alkalinity. Alkalinity is given to a good approximation by

(67)

[CO2]

(
K1

h
+ 2

K1K2

h2

)
+

BTKB

KB + h
+
Kw

h
− h, (33)

where KB is the boric acid dissociation constant, Kw is the ionic product of water, and BT is the total

concentration of boron. Using Eqs. 29 and 32, we obtain

Alk(I, h) =
K0I

mcV ρK0(1 +
K1

h
+ K1K2

h2
) +Ma

(
K1

h
+ 2

K1K2

h2

)
+

BTKB

KB + h
+
Kw

h
− h, (34)
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BT is obtained as 0.0004151 mol/kg from ref. (68), while the other coefficients are obtained from ex-

pressions given in the Appendix of ref. (67). Computing P (I)|alk fixed numerically reveals that it is well

approximated by an expression of the form P (I) = χ Iγ

Iγ+IγT
. This is shown in Figure S3, where total

alkalinity is set to 2400 µmol/kg, IT = 58000 Pg, γ = 6.5, and χ = 7000. The model uses this expression

and these parameter values.
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Figure S3: P (I) at constant alkalinity. The numerical solution is well-
approximated by an expression of the form P (I) = χ Iγ

Iγ+IγT
: our model simply

uses this latter expression.
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δ18O-δ13C regressions

−0.5 0.0 0.5
∆δ13C

−0.5

0.0

0.5

∆
δ1

8
O

Paleocene, slope = 0.85

−2 0
∆δ13C

−2

−1

0

∆
δ1

8
O

Eocene, slope = 0.77

−0.5 0.0 0.5
∆δ13C

−0.5

0.0

0.5

∆
δ1

8
O

Oligocene, slope = 1.06

−1 0
∆δ13C

−1

0

∆
δ1

8
O

Miocene, slope = 0.93

−1 0 1
∆δ13C

−1

0

1

∆
δ1

8
O

Pliocene, slope = -0.87

−1 0 1
∆δ13C

−1

0

1

∆
δ1

8
O

Pleistocene, slope = -0.83

Figure S4: Reduced major axis regressions of sub-Myr fluctuations in δ18O and
δ13C throughout each epoch of the Cenozoic.
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