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In Brief

Here, Lord et al. sequence a complete

nuclear genome and 14 mitogenomes

from the extinct woolly rhinoceros.

Demographic analyses show that the

woolly rhinoceros population size was

large until close to extinction and not

affected by modern human arrival in

northeastern Siberia. The extinction may

have been mostly driven by climate

warming.
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SUMMARY
Ancient DNA has significantly improved our understanding of the evolution and population history of extinct
megafauna. However, few studies have used complete ancient genomes to examine species responses to
climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted
megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct
approximately 14 thousand years before present (ka BP). While humans and climate change have been pro-
posed as potential causes of extinction [1–3], knowledge is limited on how the woolly rhinoceros was
impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and
14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Un-
like other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka
BP and subsequently remained stable until close to the species’ extinction. Analysis of the nuclear genome
from a �18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, sug-
gesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The
population contraction leading to extinction of the woolly rhinocerosmay have thus been sudden andmostly
driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-spe-
cific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species
respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the
evolutionary history of extinct species.
RESULTS AND DISCUSSION

Genome Sequencing
To investigate changes in genetic diversity that preceded the

extinction of the woolly rhinoceros, and to obtain a glimpse of
Current Biology 30, 1–9, O
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the species’ genomic adaptation to the arctic environment,

we sequenced a woolly rhinoceros nuclear genome and 14

mitochondrial genomes that ranged in age from >50 to 14.1

thousand calibrated years before present (ka cal BP). The

specimen from which we recovered the nuclear genome was
ctober 5, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1
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radiocarbon dated to 18,530 ± 170 cal BP (Data S1A) and had

an endogenous DNA content of 56.7%. After mapping the raw

data to a new and high-quality assembly of its closest extant

relative, the Sumatran rhinoceros (Dicerorhinus sumatrensis)

[5, 6], the average genome coverage was 13.6X, with 70% of

the genome having a coverage R10X. The average DNA frag-

ment length was 84 bp, and overall, we identified 28,180,718

high-quality SNPs after filtering out SNPs with low mapping

and base quality and low coverage (see STAR Methods).

Furthermore, we conducted low-coverage shotgun sequencing

on 13 additional woolly rhinoceros specimens, recovering

in total 14 full mitochondrial genomes from northeastern Siberia

(Figure 1A) with an average depth ranging from 7.5X to 912.8X

(Data S1A).

Demographic History
Among the 14 mitochondrial genomes, we identified 13 unique

mitogenome haplotypes (Figure S1A). Based on both a Bayesian

phylogeny and median-joining network, we identified two clades

(1 and 2) that diverged �205 ka BP (95% highest posterior den-

sity [HPD]: 440–116 ka BP) and persisted up until close to the

extinction of the woolly rhinoceros (Figures 1B and S1A). There

was no indication of geographic or temporal structuring between

or within these clades, except for a single sample from Wrangel

Island forming its own distinct lineage, diverging from clade 1

�154 ka BP (95% HPD: 326–91 ka BP). This unique lineage

may result from isolation on Wrangel Island because of less

favorable habitat south of this locality, as steppe turned into

forested and shrub lowlands during warm periods [9, 10]. Future

studies that include additional samples from Wrangel will allow

exploration of potential genetic structure between Wrangel and

adjacent regions in northeastern Siberia.
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The mitochondrial phylogeny had long, well-resolved

branches between the three clades (Figure 1B), similar to

the pattern observed in woolly mammoths (Mammuthus pri-

migenius) [11]. It has been hypothesized that this mitogenome

structure in mammoths potentially resulted from isolation in

interglacial refugia [11]. Finding a similar structure in woolly

rhinoceros and mammoths suggests that these species re-

sponded similarly to past climate warming. Within clades 1

and 2 of the mitochondrial phylogeny, the short unresolved

branches suggest a recent diversification approximately 86–

22 ka BP (95% HPDs for Node C and D, Figure 1B). In the

demographic analyses, a model of constant population size

obtained the highest support (Figure S1B; Data S1B), with a

female effective population size (Nef) of around 100,000

over the last 110 ka until the extinction at ca. 14 ka BP.

However, an alternative model, albeit with a lower likelihood

of support, indicated an expansion in Nef, consistent with

the recent diversification of lineages within each clade

observed in the phylogeny (Figure S1C).

To further examine the demographic history of the woolly rhi-

noceros, we used a pairwise sequentially Markovian coalescent

(PSMC) analysis based on the nuclear genome (Figure 2). Effec-

tive population size (Ne) increased gradually from�1Ma BP dur-

ing the Early Pleistocene, reaching a peak of �21,000 at around

152 ka BP (95% confidence interval [CI]: 274–111 ka BP), during

the Marine Isotope Stage 6 (MIS 6) glaciation (130–191 ka BP).

Subsequently, Ne decreased 10-fold from 127 ka BP (95% CI:

226–94 ka BP) until 29.7 ka BP (95%CI: 40–26.3 ka BP), at which

point there was a rapid expansion inNe. The effective population

size then remained constant until the time of the death of the in-

dividual (18.5 ka cal BP), approximately 4.5 ka prior to the extinc-

tion of the species.

mailto:edana.lord@zoologi.su.se
mailto:love.dalen@nrm.se
https://doi.org/10.1016/j.cub.2020.07.046


Figure 1. Sampling Locations and Bayesian Phylogeny from a Constant Size Model Inferred with BEAST

(A) Map showing sampling locations in Siberia. The map was created using R [7].

(B) Bayesian phylogeny for mitochondrial genomes (16,438 bp), where posterior probability support values above 0.9 are shown. MIS1–MIS6 corresponds to

Marine Isotope Stages. The estimated ages of nodes A–D are shown as 95% HPD ranges. Mitochondrial sequences for ND008 and ND010 were identical;

however, the position of all terminal nodes were adjusted to show the calibrated age of each specimen, using BEAUti v1.10.4 [8], with the median value of dates

listed in Data S1A.

See also Figure S1.
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The observation that Nef was higher than Ne during the Late

Pleistocene (Figures 2 and S1B) could potentially be explained

by male-biased dispersal and female philopatry. However,

there is little evidence for sex-biased dispersal in extant rhinoc-

eros (e.g., black rhinoceros Diceros bicornis [14]; white rhinoc-

eros Ceratotherium simum [15]), which makes this explanation

unlikely for woolly rhinoceros. Instead, we hypothesize that

the comparatively high Nef in the woolly rhinoceros is a conse-

quence of a high variance in male reproductive success, similar

to what has been reported for white rhinoceros [16]. Future

analysis of nuclear data from multiple male and female woolly

rhinoceros will be necessary to further explore this question

and to provide genomic insights into aspects of its behavior.

The observed increase in Ne leading up to MIS 6 may signify a

demographic expansion but could alternatively be attributed to

population subdivision and the divergence of the two clades

identified in the mitochondrial analyses. It is plausible that these

clades formed in allopatry, possibly during an interglacial period,

and that these populations subsequently expanded and merged

during or after MIS 6, leading to the lack of phylogeographic

structure observed in the mitochondrial data. Thus, the peak

observed at MIS 6 may be an artifact of a population subdivision

rather than an increase in population size as population structure

is known to affect PSMC [17–19]. Following MIS 6, the effective

population size decreased through the Eemian interglacial

(�130–115 ka) and the beginning of the last glacial period, reach-

ing a minimum Ne at �33 ka BP.

Although PSMC has reduced power in estimating Ne during

the 20 ka prior to the age of the sample [17], we observed an in-

crease in Ne at 29.7 ka BP. While this increase is consistent with
previous estimates based on short mitochondrial DNA se-

quences from woolly rhinoceros [2] and the diversification within

each clade observed in our mitogenomes, it is in contrast to data

from the woolly mammoth, which did not indicate an expansion

inNe at that time [20].We hypothesize that the observed increase

in Ne in the woolly rhinoceros may have been related to the tran-

sition from the climatically unstableMIS 3 to themore stable cold

period of MIS 2 around 29 ka BP [21], which was a period sug-

gested to have suitable habitat in northeastern Siberia for cold-

adapted species [22, 23]. However, as the woolly rhinoceros

experienced an increase in Ne, other cold-adapted taxa such

as the woolly mammoth’s Ne remained stable. MIS 2 may thus

have provided a particularly suitable habitat for the woolly rhi-

noceros with glacial tundra-steppe conditions prevailing and al-

lowing population expansion [24]. An alternative explanation

may be that the increase in Ne represents the merging of popu-

lations as the range of the highly specialized grazers such as

woolly rhinoceros [24] contracted toward northeastern Siberia

[18], while the mammoth, which may have been ecologically

more flexible as exemplified by its wider distribution [2, 25, 26],

maintained a constant Ne.

Although tentative because of the limitations of PSMC anal-

ysis, our results suggest that the woolly rhinoceros’ population

size may have remained constant after the expansion 29.7 ka

BP and until the death of the sequenced individual. Our mito-

chondrial data further supports a scenario of population stability

until close to the extinction of the species (Figures 1B and S1B),

since the two lineages identified here persisted until within �300

years of the estimated extinction event at �14 ka BP [1]. In spite

of a progressive range contraction toward northeastern Siberia
Current Biology 30, 1–9, October 5, 2020 3



Figure 2. Temporal Changes in Woolly Rhi-

noceros Effective Population Size (Ne) Us-

ing the PSMC

Time is given in units of divergence per base pair

on the lower x axis. The upper x axis corresponds

to time in years BP assuming a substitution rate of

2.343 10�8 substitutions/site/generation [12] with

the range given in parentheses taking into account

the uncertainty of the rate estimate (see STAR

Methods) and a generation time of 12 years [13].

Thin lines depict 100 bootstrap replicates for

specimen ND035 (18,530 ± 170 cal BP). The y axis

corresponds to the effective population size (Ne).

MIS1–MIS6 corresponds to Marine Isotope

Stages. The vertical red line depicts the approxi-

mate extinction of woolly rhinoceros at�14 ka BP.

The blue bars depict the Eemian interglacial and

Bølling-Allerød interstadial. The gray bar repre-

sents approximate first human arrival in north-

eastern Siberia [4].
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starting 35 ka BP, the fossil record indicates that the species was

still widespread up until 18.5 ka BP [1], which may explain why

our population size estimates remained constant. Interestingly,

data from several other mammals highlight the importance of

northeastern Siberia as a late glacial refugium. For example,

recent analyses indicate that extant wolf lineages originated in

northeastern Siberia [27], and it has been hypothesized that ad-

mixing of modern human populations occurred in the area, prior

to the colonization of North America (e.g., [4, 28, 29]). Similarly,

horse, bison, and collared lemming also have highly diverged

mitochondrial lineages that survived in northeastern Siberia after

the Last Glacial Maximum [30–32], suggesting long-term popu-

lation continuity for several taxa in this region.

Genomic Diversity and Extinction
The woolly rhinoceros genome had an average heterozygosity of

approximately 1.7 heterozygous sites per 1,000 bp (95% CI:

1.66–1.74). This is higher than the genomic diversity observed

in a previously published mainland mammoth genome (1.25 het-

erozygous sites per 1,000 bp [20]), as well as the extant Suma-

tran rhinoceros (1.3 heterozygous sites per 1,000 bp [12]) and

Northern and Southern White rhinoceros (1.1 and 0.9 heterozy-

gous sites per 1,000 bp, respectively [33]). Based on identifica-

tion of runs of homozygosity (ROH), we estimated the inbreeding

coefficient (FROH) to be 5.9% when considering ROH regions

> 0.5Mb. Furthermore, 96%of the ROHwere < 0.5Mb in length,

and the maximum ROH length was 2.5 Mb (Figures 3 and S2).

This result was consistent when using a range of less stringent

parameters, accounting for any remaining DNA damage after

USER treatment (see STAR Methods; Figure S2). This observed

level of inbreeding is comparatively low and, for example, on par

with non-African human populations [34].We note, however, that

the level of inbreeding is higher than that observed in a Late

Pleistocene mainland mammoth (FROH: 0.83%) and indicates

some degree of background relatedness from mating between
4 Current Biology 30, 1–9, October 5, 2020
distant relatives [35], potentially because of higher population

substructure and/or reduced local population size at the time

compared with the mammoth. However, this result is in stark

contrast to a 4.3 ka BP mammoth from Wrangel Island (FROH:

23.3%), which showed increased inbreeding associated with

long-term small population size [20, 36].

Taken together, our analyses of nuclear and mitochondrial

genomic diversity in the woolly rhinoceros provide no evidence

for a decline in population size preceding the samples analyzed

here, nor any indication of elevated inbreeding typical of small

populations. While we cannot exclude the role of humans in

woolly rhinoceros’ extinction, our results imply that the arrival

of anatomically modern humans in northeastern Siberia was

not correlated with a demographic decline in the woolly rhinoc-

eros. However, we caution that the earliest evidence of human

presence in northeastern Siberia, dated to 31.6 ka BP [4], may

represent temporary settlements [37] and that currently there is

only evidence of sporadic human presence through MIS 3–2

[38], thus humans may have only had a limited negative impact

on woolly rhinoceros populations.

Overall, our findings of a stable population size until at least

18.5 ka suggest that the final decline toward extinction was rapid

and started within the 4,500 years prior to the extinction (i.e., af-

ter the death of the individual whose genome was sequenced

here). This severe and rapid demographic decline, which based

on radiocarbon evidence [1] likely coincided with the Bølling-Al-

lerød interstadial (14.6–12.8 ka), could imply that the extinction of

woolly rhinoceros was primarily driven by the changes in climate

and vegetation characteristic of the period [22]. Across Eurasia,

the Bølling-Allerød interstadial was characterized by an increase

in forest habitats and woody plant cover [9]. Stuart and Lister [1]

previously suggested that the replacement of low-growing vege-

tation by shrub-tundra and tree biomes (e.g., Salix sp., Betula

sp.) in Siberia during the warm Bølling-Allerød interstadial [9,

23], combined with increased snowfall [39], likely led to the



Figure 3. Frequency Distribution of Runs of

Homozygosity (ROH) Size in One Woolly

Rhinoceros

The specimen (ND035) was dated to 18,530 ± 170

cal BP. Only ROH R0.1 Mb are shown. Inset

shows the magnification of ROH for clarity. See

also Figure S2.
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extinction of the woolly rhinoceros. Additional sequencing of in-

dividuals closer to the extinction event will be needed to gain a

better understanding of the timing and rate of decline toward

extinction.

Adaptation to Cold Environments
We undertook a preliminary evaluation of adaptations in woolly

rhinoceros relative to Sumatran rhinoceros by examining non-

synonymous mutations (i.e., missense; loss of function, LoF)

across 19,556 coding genes. Overall, we found 1,524 identifiable

genes with non-synonymous mutations (n missense = 1386,

n LoF = 138; Data S1D) associated with biological processes

including cellular component organization or biogenesis,

cellular process, localization, reproduction, biological regulation,

response to stimulus, developmental processes, and metabolic

processes, several of which are significantly overrepresented

(Data S1E and S1F). In contrast to previous analyses of another

cold-adaptedmegafaunal species, thewoollymammoth [40], we

did not observe non-synonymous variants in genes associated

with fat deposition and changes to circadian rhythm thought to

have played a role in mammoth adaptation to the arctic environ-

ment. However, in 89 genes, thewoollymammoth and thewoolly

rhinoceros both had non-synonymous variants potentially indic-

ative of positive selection, including in TRPA1 (Transient Recep-

tor Potential subfamily A; Data S1G and S1H), which is known to

be involved in adaptation to cold tolerance [41, 42]. Variants un-

dergoing positive selection in genes encoding TRP channels,

including TRPA1, have recently been described in a range of
C

cold-adapted taxa [40, 43]. Furthermore,

there was one gene (KCNK17, potassium

channel subfamily K) in which both spe-

cies have a LoF mutation. KCNK17 is a

paralog of KCNK4 (also known as

TRAAK, TWIK-Related Arachidonic

Acid-Stimulated Potassium Channel Pro-

tein), which under normal function has

been shown to silence TRP proteins

including TRPA1 and TRPM8 [42]. Thus,

this gene is involved in cold temperature

perception and, when knocked out, may

play a role in cold adaptation [42].

To further identify genes that may have

been of adaptive significance in the

woolly rhinoceros, we ranked all identi-

fied missense mutations (n = 17,888) ac-

cording to three indices (amino acid index

[aaI], experimental exchangeability, and

Sneath’s amino acid dissimilarity) in order

to evaluate their impact on protein struc-

ture and physicochemical properties
(Data S1C; see STARMethods). The results showed that all three

indices gave similar results (Data S1C). The distribution of aaI

was bi-modal, with the majority of mutations predicted to cause

mostly weak to moderate changes in protein structure (Fig-

ure S3). However, there were 284 variants with an aaI of 1, indi-

cating maximal change of amino acid physicochemical proper-

ties. Of these variants, 83 were found across 41 different

olfactory receptor genes (Data S1C), which is consistent with

frequent gene gains and losses during the evolution of this

gene family [44].

Conclusions
Our analyses of genomic diversity have several implications for

understanding the population history and biology of the woolly

rhinoceros. First, the finding of deep divergence among mito-

chondrial lineages hints at a dynamic history during the Middle

Pleistocene, possibly characterized by the fragmentation and

subsequent merger of populations. Second, analyses of mitoge-

nomes and the nuclear genome both suggest that the species’

final decline toward extinction was rapid and did not begin until

after 18.5 ka BP. This implies that the woolly rhinoceros Ne did

not start to decline until approximately 13 ka after the first arrival

of humans in northeastern Siberia [4, 28, 29]. This does not

exclude the possibility that humans later contributed to their

extinction. For instance, hunting of woolly rhinoceros by humans

could have reduced the population growth rate and, thus,

may have accelerated the extinction of the species. However,

given the data at hand, it appears likely that changes in the
urrent Biology 30, 1–9, October 5, 2020 5
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environment, associated with the onset of the Bølling-Allerød

interstadial, were the primary drivers of the woolly rhinoceros’

extinction. It should be possible to further investigate the extent

to which the final demographic decline coincided with the Bøl-

ling-Allerød by analyzing additional genomes from the time

period 18–14 ka BP. Finally, our preliminary assessment of adap-

tive genetic variation in thewoolly rhinoceros identified a range of

non-synonymous changes in genes associated with several

biological processes, including a gene (TRPA1) involved in tem-

perature sensation. Taken together, these findings highlight the

utility of genomic data in unraveling previously unknown evolu-

tionary processes in extinct species and illustrate the need to

investigate demographic trajectories in other megafauna to

develop a better understanding of the timing and rate of demo-

graphic change during the Late Quaternary.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead Contact

B Materials Availability

B Data and Code Availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

d METHOD DETAILS

B DNA extraction

B Library preparation

d QUANTIFICATION AND STATISTICAL ANALYSIS

B De-novo reference assembly and annotation

B Estimation of endogenous DNA content

B Mitogenome data processing

B Nuclear genome data processing

B Mitogenome data analysis

B Demographic reconstruction

B Heterozygosity and inbreeding

B Non-synonymous mutations

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.

cub.2020.07.046.

ACKNOWLEDGMENTS

We thank Anthony Stuart for providing fossil samples. The authors are grateful

to Alexander Banderov, Semen Ivanov, Klimovsky Aisen, and several others

for help with collection of samples in the field. We acknowledge support

from the Uppsala Multidisciplinary Centre for Advanced Computational Sci-

ence for assistance with massively parallel sequencing and access to the UP-

PMAX computational infrastructure. We also acknowledge Tom van der Valk

for sharing a script for CpG sites filtering and Shyam Gopalakrishnan for

sharing a demultiplex script of BGI raw data. Sequencing was performed by

the Swedish National Genomics Infrastructure (NGI) at the Science for Life

Laboratory (Illumina data), which is supported by the Swedish Research Coun-

cil and the Knut and Alice Wallenberg Foundation, and at the China National

Genebank (BGISeq data). We thank the Sabah Biodiversity Centre for allowing

us to export samples from Sumatran rhinoceros individuals from Sabah (Li-

cense Ref JKM/MBS.1000-2/3 JLD.2 (32)). We also thank Dr. Zainal Zainuddin

and Dr. John Payne from Borneo Rhino Alliance (BORA) and the late Dr. Diana
6 Current Biology 30, 1–9, October 5, 2020
Angeles Ramirez Saldivar from the Wildlife Rescue Unit for providing samples

from the Sumatran rhinoceros individual used for the reference genome as-

sembly. This work was supported by Formas (2015-676 and 2018-01640)

and the Bolin Centre for Climate Research to L.D., the Swiss National Science

Foundation (P2SKP3_165031 and P300PA_177845) and the Carl Tryggers

Foundation (CTS 19:257) to N.D., the Carl Tryggers Foundation (CTS 17:109)

to D.D.-d.-M., and an ERC Consolidator Award 681396-Extinction Genomics

to M.T.P.G. M.K. is financially supported by the Knut and Alice Wallenberg

Foundation as part of the National Bioinformatics Infrastructure Sweden at

SciLifeLab.

AUTHOR CONTRIBUTIONS

E.L., N.D., and L.D. designed the research. E.L., N.D., M.K., D.D.-d.-M.,

O.A.R., D.W.G.S., M.T.P.G., F.S.-B., G.Z., M.-H.S.S., E.D.L., E.W., A.P.,

F.S., S.F., H.B., S.K.S.S.N., B.G., J.v.d.P., Y.L.C., S.P., O.P., I.K., A.M.L,

P.D.H., J.D.K., B.S., S.V., A.G., and L.D. performed research. E.L., N.D.,

D.W.G.S., Y.L.C., and F.S.-B. undertook laboratory work. E.L., N.D., M.K.,

and D.D.-d.-M. analyzed data. S.F., I.K., A.M.L., S.V., E.D.L., E.W., and B.S.

provided samples. E.L. and N.D. wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: May 14, 2020

Revised: June 18, 2020

Accepted: July 14, 2020

Published: August 13, 2020

REFERENCES

1. Stuart, A.J., and Lister, A.M. (2012). Extinction chronology of the woolly

rhinocerosCoelodonta antiquitatis in the context of late Quaternary mega-

faunal extinctions in northern Eurasia. Quat. Sci. Rev. 51, 1–17.

2. Lorenzen, E.D., Nogu�es-Bravo, D., Orlando, L., Weinstock, J., Binladen,

J., Marske, K.A., Ugan, A., Borregaard, M.K., Gilbert, M.T.P., Nielsen,

R., et al. (2011). Species-specific responses of Late Quaternary mega-

fauna to climate and humans. Nature 479, 359–364.

3. Kuzmin, Y.V. (2010). Extinction of the woolly mammoth (Mammuthus pri-

migenius) and woolly rhinoceros (Coelodonta antiquitatis) in Eurasia:

Review of chronological and environmental issues. Boreas 39, 247–261.

4. Sikora, M., Pitulko, V.V., Sousa, V.C., Allentoft, M.E., Vinner, L.,

Rasmussen, S., Margaryan, A., de Barros Damgaard, P., de la Fuente,

C., Renaud, G., et al. (2019). The population history of northeastern

Siberia since the Pleistocene. Nature 570, 182–188.

5. Orlando, L., Leonard, J.A., Thenot, A., Laudet, V., Guerin, C., and H€anni, C.

(2003). Ancient DNA analysis reveals woolly rhino evolutionary relation-

ships. Mol. Phylogenet. Evol. 28, 485–499.

6. Willerslev, E., Gilbert, M.T.P., Binladen, J., Ho, S.Y.W., Campos, P.F.,

Ratan, A., Tomsho, L.P., da Fonseca, R.R., Sher, A., Kuznetsova, T.V.,

et al. (2009). Analysis of complete mitochondrial genomes from extinct

and extant rhinoceroses reveals lack of phylogenetic resolution. BMC

Evol. Biol. 9, 95.

7. R Core Team (2017). R: A Language and Environment for Statistical

Computing. (R Found Statistical Computing).

8. Suchard, M.A., Lemey, P., Baele, G., Ayres, D.L., Drummond, A.J., and

Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data inte-

gration using BEAST 1.10. Virus Evol. 4, vey016.

9. Binney, H., Edwards, M., Macias-Fauria, M., Lozhkin, A., Anderson, P.,

Kaplan, J.O., Andreev, A., Bezrukova, E., Blyakharchuk, T., Jankovska,

V., et al. (2017). Vegetation of Eurasia from the last glacial maximum to pre-

sent: Key biogeographic patterns. Quat. Sci. Rev. 157, 80–97.

10. Hoffecker, J.F., Elias, S.A., and Potapova, O. (2020). Arctic Beringia and

Native American Origins. PaleoAmerica 6, 158–168.

https://doi.org/10.1016/j.cub.2020.07.046
https://doi.org/10.1016/j.cub.2020.07.046
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref1
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref1
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref1
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref2
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref2
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref2
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref2
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref2
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref3
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref3
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref3
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref4
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref4
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref4
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref4
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref5
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref5
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref5
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref5
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref6
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref6
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref6
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref6
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref6
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref7
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref7
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref8
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref8
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref8
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref9
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref9
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref9
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref9
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref10
http://refhub.elsevier.com/S0960-9822(20)31071-X/sref10


ll
OPEN ACCESS

Please cite this article in press as: Lord et al., Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros,
Current Biology (2020), https://doi.org/10.1016/j.cub.2020.07.046

Report
11. Palkopoulou, E., Dal�en, L., Lister, A.M., Vartanyan, S., Sablin, M., Sher, A.,

Edmark, V.N., Brandström, M.D., Germonpr�e, M., Barnes, I., and Thomas,

J.A. (2013). Holarctic genetic structure and range dynamics in the woolly

mammoth. Proc. Biol. Sci. 280, 20131910.

12. Mays, H.L., Jr., Hung, C.-M.M., Shaner, P.-J.J., Denvir, J., Justice, M.,

Yang, S.-F.F., et al. (2018). Genomic Analysis of Demographic History

and Ecological Niche Modeling in the Endangered Sumatran Rhinoceros

Dicerorhinus sumatrensis. Curr. Biol. 28, 70–76.

13. Roth, T.L., Reinhart, P.R., Romo, J.S., Candra, D., Suhaery, A., and

Stoops, M.A. (2013). Sexual maturation in the Sumatran rhinoceros

(Dicerorhinus sumatrensis). Zoo Biol. 32, 549–555.

14. Law, P.R., Fike, B., and Lent, P.C. (2014). Birth sex in an expanding black

rhinoceros (Diceros bicornis minor) population. J. Mammal. 95, 349–356.

15. Shrader, A., and Owen-Smith, N. (2002). The role of companionship in the

dispersal of white rhinoceroses (Ceratotherium simum). Behav. Ecol.

Sociobiol. 52, 255–261.

16. Kretzschmar, P., Auld, H., Boag, P., Gansloßer, U., Scott, C., Van

Coeverden de Groot, P.J., and Courtiol, A. (2019). Mate choice, reproduc-

tive success and inbreeding in white rhinoceros: New insights for conser-

vation management. Evol. Appl. 13, 699–714.

17. Li, H., and Durbin, R. (2011). Inference of human population history from

individual whole-genome sequences. Nature 475, 493–496.

18. Mazet, O., Rodrı́guez, W., Grusea, S., Boitard, S., and Chikhi, L. (2016). On

the importance of being structured: instantaneous coalescence rates and

human evolution–lessons for ancestral population size inference? Heredity

116, 362–371.

19. Mather, N., Traves, S.M., and Ho, S.Y.W. (2019). A practical introduction to

sequentially Markovian coalescent methods for estimating demographic

history from genomic data. Ecol. Evol. 10, 579–589.

20. Palkopoulou, E., Mallick, S., Skoglund, P., Enk, J., Rohland, N., Li, H.,

Omrak, A., Vartanyan, S., Poinar, H., Götherström, A., et al. (2015).
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

EDTA ThermoFisher Scientific Cat#15575020

UREA VWR Cat#443874G

DTT ThermoFisher Scientific Cat#R0861

Tango Buffer (10X) ThermoFisher Scientific Cat#BY5

ATP (100mM) ThermoFisher Scientific Cat#R0441

T4 Polynucleotide Kinase (10U/ul) ThermoFisher Scientific Cat#EK0032

T4 DNA Polymerase 5U/ul ThermoFisher Scientific Cat#EP0062

USER Enzyme NEB Cat#M5505L

T4 DNA Ligase (5U/ul) ThermoFisher Scientific Cat#EL0011

Bst Polymerase NEB Cat#M0275S

AccuPrime Pfx Life Technologies Cat#12344-024

T4 DNA ligase (400U/ul) NEB Cat#M0202S

T4 DNA polymerase (3U/ul) NEB Cat#M0203S

Bst 2.0 Warmstart Polymerase (8U/ul) NEB Cat#M0538S

NaCl 5M solution Sigma-Aldrich Cat#59222C-500ML

PEG-8000 Sigma-Aldrich Cat#89510-250G-F

BSA (20 mg/mL) NEB Cat#B9000S

Critical Commercial Assays

High Sensitivity DNA kit Agilent Cat#5067-4626

KingFisher� Cell and Tissue DNA Kit ThermoFisher Scientific Cat#97030196

Deposited Data

Raw fastq reads (mitochondrial and nuclear data) This study ENA study accession number PRJEB35556

de-novo assembly for Dicerorhinus sumatrensis This study GenBank: JABWHU000000000

Oligonucleotides

IS1 adaptor P5:

50->30

A*C*A*C*TCTTTCCCTACACGACGCTCTTC

CG*A*T*C*T

[45] Sigma-Aldrich

IS2 adaptor P7:

50->30

G*T*G*A*CTGGAGTTCAGACGTGTGCTCTTC

CG*A*T*C*T

[45] Sigma-Aldrich

IS3 adaptor P5+P7:

50->30

A*G*A*T*CGGAA*G*A*G*C

[45] Sigma-Aldrich

Illumina AmplifyingPrimer IS4:

50->30

AATGATACGGCGACCACCGAGATCTACACTC

TTTCCCTACACGACGCTCTT

[45] Sigma-Aldrich

Illumina Indexing Primer:

50->30

CAAGCAGAAGACGGCATACGAGATNNNNN

NNGTGACTGGAGTTCAGACGTGT

Ns represent indexes

[45] Sigma-Aldrich

IS3 ATDC3 adaptor:

50->30

G*A*T*C*GGAA*G*A*G*C[C3spacer]

[46] Sigma-Aldrich

(Continued on next page)
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BGISEQ adaptor AD1_Long:

50->30 AAGCAGAAGACGGCATACGAGATGTT

GTCTTCCTAAGACCGCTTGGCCTCCGACTT

[47] Sigma-Aldrich

BGISEQ adaptor AD1_Short:

50->30 AAGTCGGAGGCC

[47] Sigma-Aldrich

BGISEQ adaptor AD2_Long:

50->30 TTGTCTTCCTAAGGAACGACATGGCT

ACGATCCGACTT

[46] Sigma-Aldrich

BGISEQ adaptor AD2_Short:

50->30 AAGTCGGATCGT

[46] Sigma-Aldrich

BGISEQ Indexing primer:

50->30 TGTGAGCCAAGGAGTTGNNNNNNNN

NNTTGTCTTCCTAAGACCGC

Ns represent indexes

[46] Sigma-Aldrich

Common amplifying primer BGI forward:

50->30

GAACGACATGGCTACGA

[46] Sigma-Aldrich

Software and Algorithms

OxCal v4.3 [48] https://c14.arch.ox.ac.uk/oxcal.html

Allpaths v.2.0 [49] ftp://ftp.broadinstitute.org/pub/crd/

ALLPATHS/Release-LG/

HiRise pipeline [50] Dovetail Genomics

BLAST+ 2.5.0 [51] NCBI

MESPA pipeline [52] https://sourceforge.net/projects/mespa/

cufflinks v 2.2.1 [53] http://cole-trapnell-lab.github.io/cufflinks/

eggNOG-mapper v4.5.1 [54] http://eggnog-mapper.embl.de/

bcl2Fastq v1.8.3 Illumina https://support.illumina.com/sequencing/

sequencing_software/bcl2fastq-conversion-

software.html

Custom BGI demultiplexing script Shyam Gopalakrishnan https://github.com/shyamsg/SantasHelpers/

SeqPrep John St. John https://github.com/jstjohn/SeqPrep

BWA v0.7.13 [55] http://bio-bwa.sourceforge.net/

SAMtools v1.3 [56] https://sourceforge.net/projects/samtools/

files/samtools/1.3/

Geneious� v7.0.336 [57] https://www.geneious.com/

Picard v1.141 Broad Institute http://broadinstitute.github.io/picard

GATK v3.4.0 [58] https://gatk.broadinstitute.org/hc/en-us

Mapdamage v2.0 [59] https://ginolhac.github.io/mapDamage/

Qualimap v2.2.1 [60] http://qualimap.bioinfo.cipf.es/

BEDtools v2.29.2 [61] https://bedtools.readthedocs.io/en/latest/

DnaSP6 v6.12.03 [62] http://www.ub.edu/dnasp/

PopArt [63] http://popart.otago.ac.nz/index.shtml

BEAST Software v1.10.4 [8] https://beast.community/

jModelTest v2.1.9 [64] https://github.com/ddarriba/jmodeltest2

Figtree v1.4.4 [65] http://tree.bio.ed.ac.uk/software/figtree/

Tracer v1.7.1 [66] https://github.com/beast-dev/tracer/

releases/tag/v1.7.1

PSMC v0.6.5 [17] https://github.com/lh3/psmc

mlRho v2.7 [67] http://guanine.evolbio.mpg.de/mlRho/

PLINK v1.9 [68] https://www.cog-genomics.org/plink2

SNPeff v4.3 [69] http://snpeff.sourceforge.net/index.html

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

simpred NBIS https://github.com/NBISweden/simpred

Panther 70 http://www.pantherdb.org/

Other

Proteinase K VWR Cat#1.24568.0100

dNTPs VWR Cat#733-1854

QiaQuick PCR purification Kit QIAGEN Cat#28106

Min Elute PCR purification Kit QIAGEN Cat#28006

Agencourt AmPure XP 5mL Kit Beckman Coulter Cat#63880
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents and data may be directed to and will be fulfilled by the Lead Contact, Edana Lord

(edana.lord@zoologi.su.se).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Raw fastq reads for mitogenome and nuclear data are deposited at the European Nucleotide Archive (ENA; study accession number

PRJEB35556). The de-novo assembly for Dicerorhinus sumatrensis is deposited on GenBank (accession: JABWHU000000000).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We obtained 12 bones, one mummified tissue biopsy, and one hair sample of woolly rhinoceros, which were radiocarbon dated to

between 14,100 and > 50,000 cal BP fromNorth-eastern Siberia (Data S1A). Radiocarbon dating was performed at the Oxford Radio-

carbon Accelerator Unit (ORAU, OxA), Beta Analytics (Miami, FL), ETH Zürich, and the Center for Isotope Research of Groningen

University (GrA). We calibrated all radiocarbon dates using the IntCal13 calibration curve [48] in OxCal v4.3 [71]. For the de-novo as-

sembly, we obtained tissue and cell lines from one male Sumatran Rhinoceros (Dicerorhinus sumatrensis), called Kertam, that orig-

inated from Borneo.

METHOD DETAILS

DNA extraction
We extracted DNA from bone samples according to protocol C in Yang et al. [72] as modified in Brace et al. [73]. For the mummified

tissue biopsy and hair samples, we extracted DNA following Dabney et al. [74], but substituted the digestion buffer and incubation

temperature with that described in Gilbert et al. [75]. Appropriate precautions were taken tominimize the risk of contamination during

the processing of ancient samples [76].

For the de-novo assembly, we extracted DNA from blood and cell lines from Kertam, using a Kingfisher robot (Thermo Fisher Sci-

entific) and following the Kingfisher blood & tissue extraction protocol according to the manufacturer’s instructions. Concentrations

were measured using QuBit� 2.0 Fluorometer (Invitrogen, USA) and the quality of the DNA was evaluated by running the samples

through agarose gels with electrophoresis.

Library preparation
Double stranded Illumina libraries were built for 14 extracts according to Meyer & Kircher [45], along with 2 extraction blanks. 20 ml of

DNA extract was used in a 40 ml blunt-end repair reaction with the following final concentration: 1 3 buffer Tango, 100 mM of each

dNTP, 1 mM ATP, 25 U T4 polynucleotide kinase (Thermo Scientific) and 3U USER enzyme (New England Biolabs). A USER enzyme

treatment was performed to excise uracil residues resulting from post-mortem damage [77, 78]. Samples were incubated for 3 h at

37�C, followed by the addition of 1 ml T4 DNA polymerase (Thermo Scientific) and incubation at 25�C for 15 min and 12�C for 5 min.

The samples were then purified usingMinElute spin columns following themanufacturer’s protocol and eluted in 20ul EB buffer. Next,

an adaptor ligation step was performed where DNA fragments within each library were ligated to a combination of incomplete,

partially double-stranded P5- and P7-adapters (10 mM each). This reaction was performed in a 40 ml reaction volume using 20 ml

of blunt-ended DNA library and 1 ml P5-P7 adaptor mix per sample with a final concentration of 1 3 T4 DNA ligase buffer, 5%

PEG-4000, 5U T4 DNA ligase (Thermo Scientific). Samples were incubated for 30 min at room temperature and cleaned using

MinElute spin columns as described above.
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Next, we performed an adaptor fill-in reaction in 40 ml final volume using 20 ml adaptor ligated DNAwith a final concentration of 13

Thermopol Reaction Buffer, 250 mM of each dNTP, 8U Bst Polymerase, Long Fragments. The libraries were incubated at 37�C for

20 min, and then heat-inactivated at 80�C for 20 min. These libraries were then used as stock for indexing PCR amplification for

screening (i.e., estimation of endogenous DNA content of each sample) and deep-sequencing.

PCR amplifications were performed in 25 ml volumes with 3ml of adaptor-ligated library as template, with the following final con-

centrations: 1x AccuPrime reaction mix, 0.3mM IS4 amplification primer, 0.3mMP7 indexing primer, 7 U AccuPrime Pfx (Thermo Sci-

entific) and the following cycling protocol: 95�C for 2 min, 12 cycles at 95�C for 30 s, 55�C for 30 s and 72�C for 1 min and a final

extension at 72�C for 5 min. We used dual unique indexes of 6 bp for each library.

Purification and size selection of the libraries were performed using Agencourt AMPure XP beads (Beckman Coulter, Brea, CA,

USA), first using a 0.5X bead:DNA ratio and second with a 1.8X bead:DNA ratio to remove long and short (i.e., adapter dimers) frag-

ments, respectively. Library concentration was measured with a high-sensitivity DNA chip on a Bioanalyzer 2100 (Agilent, Santa

Clara, CA, USA). Finally, multiplexed libraries were pooled into a single pool in equimolar concentrations and sequenced on Illumina

HiSeq2500 in High Output mode with a 23 125bp setup at SciLifeLab, Stockholm. The nuclear genome sample, ND035, was deep

sequenced on an Illumina HiSeqX with a 2 3 150 bp setup at SciLifeLab, Stockholm.

For the hair sample, ND045, a double stranded library was constructed following the Meyer & Kircher protocol [45] as modified by

Heintzman et al. [79]. We also built additional libraries for three samples (ND012, ND036, ND045) using the BEST2 library build pro-

tocol, a blunt-end, single tube library preparation procedure suitable for degraded DNA samples [46] and using custom-design

adaptor oligos specific for the BGISEQ-500 Sequencing Platform [47]. No USER treatment was performed for these three libraries.

QUANTIFICATION AND STATISTICAL ANALYSIS

De-novo reference assembly and annotation
We generated a de-novo reference genome for one male Sumatran rhinoceros (D. sumatrensis) by sequencing a combination of Chi-

cago, Hi-C, mate-pair and short insert libraries from a highmolecular weight DNA extract from onemale from the Bornean population

(Kertam). An initial assembly based on the short insert andmate-pairs was done using Allpaths v.2.0 [49]. The final genome assembly

was done using the HiRise pipeline (Dovetail Genomics, [50]) The final assembly size was of 2.4 Gb and comprised 1,763 scaffolds

with an N50 of 62 Mb, where 99% of the genome was comprised within 44 scaffolds > 1 Mb.

We identified X-linked scaffolds in the Sumatran rhinoceros genome in BLAST+ 2.5.0 [51] using the horse X chromosome as sub-

ject sequence. TheBLAST+ parameters were set as: -evalue = 1e-10; -word_size = 15; -max_target_seqs = 1000. For all downstream

analyses, we excluded two X chromosome-linked scaffolds (Sc9M7eS_1319;HRSCAF = 1962 and Sc9M7eS_931;HRSCAF = 1475)

from the assembled genome.

We annotated the assembly using the MESPA pipeline [52]. We collapsed reference protein sets for white rhinoceros (Ceratothe-

rium simum simum; GenBank: GCF_000283155.1) to 90% coverage following Uniprot90 guidelines where each protein cluster is

composed of sequences with at least 90% sequence identity to, and 80% overlap with, the longest sequence using a custom script.

In that way, we discarded isoforms of the reference datasets. We then used MESPA to extract the gene models in Sumatran rhinoc-

eros with 90% length coverage to each set of reference proteins and to generate an annotation in gff format. We extracted 99%

(21,953 out of 22,054) high quality protein models (i.e., aligning to 90%of their expected length) using white rhinoceros as a reference

protein set.

We extracted the CDSs and protein sequences of this annotation with cufflinks v 2.2.1 [53, 80] gffread command for downstream

analyses using the -V option to remove gene models with in-frame STOP codons. We retained 19,556 gene models with a mean

length of 1,724 bp (Median = 1,051; min = 34; max = 26,418).

Finally, we performed a functional annotation of these genemodels using the eggNOG-mapper v4.5.1 [54]. We used ‘Mammals’ as

a taxonomic scope and the ‘Restrict to one-to-one’ and the ‘Use experimental terms only’ to prioritize precision and quality of

matches.

Estimation of endogenous DNA content
Raw Illumina sequence data were demultiplexed based on their unique indices from Bcl to Fastq using bcl2Fastq v1.8.3 (CASAVA

software suite) while raw BGI data was converted and samples were demultiplexed using a custom script (https://github.com/

shyamsg/SantasHelpers/). We used SeqPrep (https://github.com/jstjohn/SeqPrep) to trim adapters andmerge paired-end reads us-

ing default settings, with a minor modification in the source code that allowed us to choose the best quality scores of bases in the

merged region instead of aggregating the scores, following [20]. Raw Illumina sequencing reads were aligned to the de-novo genome

of the Sumatran rhinoceros (Dicerorhinus sumatrensis), which is the closest extant relative to woolly rhinoceros, with BWA v0.7.13

[55] and then processed with SAMtools v1.3 [56]. We mapped the merged sequencing reads against the reference genome using

the BWA aln algorithm and slightly modified default settings with deactivated seeding (-l 16,500), allowing more substitutions

(-n 0.01) and allowing up to two gaps (-o 2). We then used the BWA samse command to generate alignments and subsequently con-

verted reads mapping to the reference genome from SAM to BAM format, sorted and indexed using SAMtools. We estimated the

endogenous DNA content for each sample as the proportion of reads mapping to the reference genome. Duplicate reads were
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removed in order to avoid upward bias in the estimation of endogenous DNA content and to avoid inflation of length distribution for

loci with deep coverage using a custom python script [20]. Endogenous DNA content ranged from 7.4% to 72.0% with a mean of

49.1% (Data S1A).

Mitogenome data processing
Reads were also mapped against the woolly rhinoceros mitochondrial reference genome (GenBank ID: FJ905813) using the above

settings to generate mitochondrial BAM files for downstream processing. We imported the mitochondrial BAM files generated using

SAMtools v1.3 as above to Geneious� v7.0.336 [57] where sequences were aligned using MUSCLE v3.8.31 [81]. We then called

consensus sequences for positions with at least 5X coverage using a majority consensus rule, with ambiguous and low-coverage

positions called as undetermined (N). Finally, we visually inspected the assembled sequences to assess overall coverage across

the 16,438 base pairs (bp) of the mitogenome and quality of the SNPs identified.

Nuclear genome data processing
We selected one sample with 56.7% endogenous DNA and dated to 18,699-18,356 cal BP for deep-sequencing (ND035, Data S1A).

We used the stock library described above as a template for PCR amplification and performed six indexing PCR reactions in order to

increase library complexity. PCR amplification, purification and size selection were performed as described above and following

Meyer & Kircher [45].

We used the same approach and parameters as described above (in ‘‘Endogenous DNA content estimation’’) to generate BAM

files, including mapping the woolly rhinoceros reads to the de-novo Sumatran Rhinoceros reference and duplicate read removal.

Next, we used Picard v1.141 (http://broadinstitute.github.io/picard) to assign read group information including library, lane and sam-

ple identity to each bam file. Reads were then re-aligned around indels using GATK v3.4.0 [58]. Only reads/alignments with mapping

qualityR30 were kept for subsequent analysis. We estimated damage patterns and then performed a base-recalibration step on the

BAM files using Mapdamage v2.0 [59]. Finally, we estimated the depth of genome coverage using Qualimap v2.2.1 [60]. The average

genome coverage was 13.6X with 70% of the genome with a genome coverage R10X (Data S1A). We then called variants using

bcftools mpileup v1.3 [56] using a minimum depth of coverage of 1/3X of the average coverage and a maximum of 2X the average

coverage, base qualityR30 and removed SNPs within 5bp of indels. We also identified CpG sites using a custom script masking CG

sites and removed them using BEDtools v2.29.2 [61]. Finally, for all downstream analyses, we excluded chromosome-linked scaf-

folds and masked repeat regions using BEDtools. Overall, we obtained 28,180,718 SNPs.

Mitogenome data analysis
Basic statistics including nucleotide diversity (p), number of haplotypes (n), haplotype diversity (d), and number of segregating sites

(S) were performed using DnaSP6 v6.12.03 [62]. Nucleotide diversity (p) within the samples was 0.00268; the number of segregating

sites (S) was 119; and haplotype diversity (d) was 0.989. Second, we created a median joining network in PopArt [63]. We added a

traits block to the nexus alignment using a custom python script to visualize the samples based on geographic region (Figure S1A).

Third, we performed demographic reconstruction of woolly rhinoceros over the last 125 ky BP in BEAST v1.10.4 [8]. The evolutionary

model for the 14 mitogenome dataset was determined to be HKY+I using the Bayesian Inference Criterion in jModelTest v2.1.9 [64].

Calibrated tip dates were added in BEAUti v1.10.4 [8] using themedian value of dates listed in Data S1A. For one sample (ND045) that

was dated at > 45 Cal ka BP (Data S1A), we used a prior with a wide boundary (uniform, initial value: 45300, lower: 0, upper: 500,000)

in order to estimate its age. Its date was estimated at 36,445 (95% HPD: 14,839-49,073) ka BP. Three tree models were analyzed:

constant size, Bayesian skyline and Bayesian Skyride. For the Skyline model, we decreased the number of groups to five in order to

avoid over-parameterisation of themodel. A strict molecular clockwas applied and the clock rate was set to a normal distributionwith

the initial value as 6.1x10�9 substitutions/site/year, the mean value at 6.1x10�9 and a standard deviation of 0.01. The initial value was

taken from Steiner et al. who calculated a substitution rate of 6.1x10�3 per site per million years for Sumatran Rhinoceros, the closest

extant relative of the woolly rhinoceros [82]. All models were run using Beast v1.10.4 for 10 million generations with sampling every

1000 generations. We calculated marginal likelihoods for each tree model using path and stepping stone models implemented in

Beast v1.10.4 (Data S1B). All output log files were visualized in Tracer v1.7.1 [66] in order to ensure convergence had occurred. De-

mographic reconstructions based on female effective population size for each tree model were also performed using Tracer (Fig-

ure S1B-d). Tree Annotator v1.10.4 [8] was used to remove 10% burn-in from the tree files. The phylogenies were then visualized

in Figtree v1.4.4 [65].

Demographic reconstruction
We used the Pairwise Sequentially Markovian Coalescent (PSMC v0.6.5 [17]) model to infer the effective population sizes (Ne) of the

woolly rhinoceros over time. This approach infers the distribution of the time to the most recent common ancestor (TMRCA) between

the two alleles across all chromosomes using the density of heterozygous sites across the diploid genome of a single individual. Re-

gions of low heterozygosity reflect recent coalescent events while regions of high heterozygosity reflect more ancient coalescent

events. The rate of coalescent events in each segment is then informative about changes in effective population size through time

since the rate of coalescence is inversely proportional to effective population size. We generated consensus sequences for all
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autosomes of the ancient genome using the SAMtools v1.3 mpileup command and the ‘vcf2fq’ command from vcfutils.pl. We used

filters for base quality, mapping quality and root-mean-squared mapping quality below 30, and depth below 1/3 and higher than 2-

times the average coverage estimated for each specimen. In order to infer the distribution of the time to the most recent common

ancestor (TMRCA) between the two copies of each chromosome from each individual across all autosomes, we set N (the number

of iterations) = 25, t (Tmax) = 15 and p (atomic time interval) = 64 (4+25*2+4+6, for each of which parameters are estimated with 28

free interval parameters). We used a rate of 2.343 10�8 substitutions/site/generation [12] and a generation time of 12 years [13]. Due

to the uncertainty in substitution rates in Rhinocerotidae, we also tested rates of 1.2 3 10�8 [83] and 3.3 3 10�8 substitutions/site/

generation based on horse [84].

Heterozygosity and inbreeding
We first estimated the overall autosomal heterozygosity using mlRho v2.7 [67] to estimate the population mutation rate (q), which ap-

proximates expected heterozygosity under the infinite sites model. We filtered out bases with quality below 30, reads with mapping

quality below 30 and positions with root-mean-squared mapping quality below 30. Because high or low coverage in some regions

resulting from structural variation can create erroneous mapping to the reference genome and false heterozygous sites, we filtered

out sites with depth lower than 1/3X and higher than 2X the estimated average coverage. The maximum likelihood approach imple-

mented inmlRho has been shown to provide unbiased estimates of averagewithin-individual heterozygosity at high coverage [67, 85].

Second, we estimated inbreeding by identifying runs of homozygosity (ROH) and calculating the individual inbreeding coefficients

(FROH) with the sliding-window approach implemented in PLINK v1.9 [68]. We converted the filtered vcf file into a ped file and iden-

tified ROHs in all autosomal scaffolds. We used a sliding window size of 100 SNPs (–homozyg-window-snp 100). A window was then

defined as homozygous if there were not more than 15 missing sites (homozyg-window-missing 15) and not more than 5 heterozy-

gous sites per window (homozyg-window-het 5). If at least 5% of all windows that included a given SNP were defined as homozy-

gous, the SNP was defined as being in a homozygous segment of a chromosome (homozyg-window-threshold 0.05). This threshold

was chosen to ensure that the edges of a ROH are properly delimited. A homozygous segment was defined as a ROH if all of the

following conditions were met: the segment included R25 SNPs (homozyg-snp 25) and covered R100 kb (homozyg-kb 100).

Furthermore, the minimum SNP density was one SNP per 50 kb (homozyg-density 50) and the maximum distance between two

neighboring SNPs was %1,000 kb (homozyg-gap 1,000). For the number of heterozygous sites within ROHs, we set the value at

750 (homozyg-het 750) in order to prevent sequencing errors to cut ROHs.We found that themajority of ROHwere < 0.5Mb in length

with a maximum ROH length of 2.5 Mb.

We also used a less stringent number of heterozygous sites per window of 10 (homozyg-window-het 10) to account for potential

ancient DNA damage. However, results were very similar with the majority of ROH < 0.5 Mb in length and maximum ROH of 3.4 Mb

(Figure S2).

Non-synonymous mutations
We used SNPeff v4.3 [69] to annotate non-synonymous nucleotide substitutions in coding regions for the woolly rhinoceros. First, we

generated a database for the Sumatran rhinoceros reference genome using the protein sequences extracted from our annotation.

Second, we identified non-synonymous variants in two different SNPeff impact categories: (a) Moderate, non-disruptive variants

that might change protein function and effectiveness, hereafter referred to as missense variants; and (b) High, variants assumed

to have high (disruptive) impact in the protein, probably causing protein truncation or triggering nonsense mediated decay (e.g.,

stop codons, splice donor variant and splice acceptor), hereafter referred to as loss of function (LoF) variants [69].

Next, we ranked all missense variants reported by SNPEff using relative change of selected physicochemical properties of

substituted amino acids and using a custom script (https://github.com/NBISweden/simpred) (Data S1C). For every non-synonymous

amino acid substitution, we computed three values reflecting the substitution-induced change in amino acid properties:

1. aaIndex score. Seven aaIndex [86] descriptors of amino acid properties selected in [87, 88]. Every such descriptor represents a

certain property of amino acid (e.g., its polarity as a numerical value corresponding to the magnitude of the property). These

descriptors were chosen with biological interpretability in mind and span a 7-dimensional space (with every descriptor repre-

sented by one axis) that preserves full discernibility between any pair of amino acids. Now, we represented every amino acid as

a point in this 7-dimensional space and following this step, we used multi-dimensional scaling (MDS) to find a low dimensional

(2D) representation of the data points. In this low-dimensional representation, the simple Euclidean distance between any pair

of points representing particular amino acids corresponds to the overall magnitude of change induced by substituting one

amino acid from the pair to the other. This relation is naturally symmetric. We then constructed a relative substitution scores

matrix where the score for a given pair of amino acids is relative to the maximal possible pairwise distance between a pair of

amino acids.

2. Sneath index which takes into account various chemical properties of substituting amino acids [89]. Similarly to aaIndex, we

use scores relative to maximal possible change.

3. Non-exchangeability index, which is an inverse of the exchangeability index proposed in Yampolsky and Stoltzfus [90]. The

exchangeability index is based on a number of experimental studies and thus provides another perspective on potential amino
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acid substitution impact. It is a non-symmetric index, i.e non_exchgb(aa1/aa2)snon_exchgb(aa2/aa1) and is not defined

for all amino acid substitutions. We are also using relative non-exchangeability for consistency with the previously mentioned

scores. For every type of score, value of 1.0 corresponds to the maximal possible change (impact) while low values indicate

likely mild substitution effects.

Finally, we retained genes affected bymissense and LoF variants and identified orthologs, and assessed the functional enrichment

of these LoF variants using Panther with horse as the reference set [70] (Data S1D-H).
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